Screening of copper tolerance fungi strains and their characteristics for copper removal

2014 ◽  
Vol 39 (6) ◽  
pp. 670-674
Author(s):  
Li-kun XIE ◽  
Jing-an WANG ◽  
Zheng-guo SONG ◽  
Zhong-qi LIU
Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 905
Author(s):  
Sebastián Sepúlveda ◽  
Carla Duarte-Nass ◽  
Mariella Rivas ◽  
Laura Azócar ◽  
Andrés Ramírez ◽  
...  

This research focused on the evaluation of the potential use of a soil-isolated bacteria, identified as Staphylococcus equorum, for microbial-induced calcite precipitation (MICP) and copper removal. Isolated bacteria were characterized considering growth rate, urease activity, calcium carbonate precipitation, copper tolerance as minimum inhibitory concentration (MIC) and copper precipitation. Results were compared with Sporosarcina pasteurii, which is considered a model bacteria strain for MICP processes. The results indicated that the S. equorum strain had lower urease activity, calcium removal capacity and copper tolerance than the S. pasteurii strain. However, the culture conditions tested in this study did not consider the halophilic feature of the S. equorum, which could make it a promising bacterial strain to be applied in process water from mining operations when seawater is used as process water. On the other hand, copper removal was insufficient when applying any of the bacteria strains evaluated, most likely due to the formation of a copper–ammonia complex. Thus, the implementation of S. equorum for copper removal needs to be further studied, considering the optimization of culture conditions, which may promote better performance when considering calcium, copper or other metals precipitation.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 399
Author(s):  
Mohammed Umar Abba ◽  
Hasfalina Che Man ◽  
Raba’ah Syahidah Azis ◽  
Aida Isma Idris ◽  
Muhammad Hazwan Hamzah ◽  
...  

High proportion of copper has become a global challenge owing to its negative impact on the environment and public health complications. The present study focuses on the fabrication of a polyvinylidene fluoride (PVDF)-polyvinyl pyrrolidone (PVP) fiber membrane incorporated with varying loading (0, 0.5, 1.0, 1.5, and 2.0 wt%) of titanium dioxide (TiO2) nanoparticles via phase inversion technique to achieve hydrophilicity along with high selectivity for copper removal. The developed fibers were characterized based on scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), permeability, porosity, zeta potential, and contact angle. The improved membrane (with 1.0 wt% TiO2) concentration recorded the maximum flux (223 L/m2·h) and copper rejection (98.18%). Similarly, 1.0 wt% concentration of TiO2 nanoparticles made the membrane matrix more hydrophilic with the least contact angle of 50.01°. The maximum copper adsorption capacity of 69.68 mg/g was attained at 1.0 wt% TiO2 concentration. The experimental data of adsorption capacity were best fitted to the Freundlich isotherm model with R2 value of 0.99573. The hybrid membrane developed in this study has considerably eliminated copper from leachate and the concentration of copper in the permeate was substantially reduced to 0.044 mg/L, which is below standard discharge threshold.


2014 ◽  
Vol 3 (2) ◽  
pp. 276-286 ◽  
Author(s):  
Daneshi Navab ◽  
Banejad Hossein ◽  
Pirtag Hamedany Reza ◽  
Daneshi Vahab ◽  
Farokhi Maedeh

Along with the technology development and increasing consumption of water resources, we are experiencing low qualities in the mentioned resources. Copper brings about serious environment al pollution, threatening human health and ecosystem. This metal found variously in water resources and industrial activities. Therefore, it needs to treat the water resources from these excessive amounts. Different methods have used for this reason but the most used method during recent years has been the absorption by economic absorbers such as sand. Rapid sand filters usually used in water and wastewater treatment plants for water clarification. In this research, a single layer gravity rapid sand filter has used to reduce different concentrations of copper. sediment value and head loss arising in filter media is simulated by using combination of Carman-Kozeny, Rose and Gregory models in different discharges of rapid sand filter. Results have shown that with increasing in discharge and decreasing in input copper concentration, arriving time to given head loss, is increasing. In addition, results demonstrated that with increasing in copper concentration in influent, removal efficiency is decreasing somewhat. Results of this research can applied in an appropriate design of rapid sand filter to copper removal, a prediction of rapid sand filter ability to copper removal and an estimation of arising head loss during filter work thus evaluating of time interval backwash. DOI: http://dx.doi.org/10.3126/ije.v3i2.10641 International Journal of the Environment Vol.3(2) 2014: 276-286


2019 ◽  
Vol 28 (18) ◽  
pp. 59-68 ◽  
Author(s):  
Jewel A. Gomes ◽  
Kamrul Islam ◽  
Mohammad R. Islam ◽  
George Irwin ◽  
Paul Bernazzani ◽  
...  

2013 ◽  
Vol 634-638 ◽  
pp. 2949-2954
Author(s):  
Xin Liang Tang ◽  
Yu Ling Liu ◽  
Hong Yuan Zhang ◽  
Jie Bao

Silica abrasive plays an important role in chemical mechanical planarization (CMP) of copper. In this paper, effect of different silica abrasive concentrations on copper removal rate and planarization performance of copper was investigated. The results show that the copper removal rate was increased as the concentration of silica abrasive increase. However, excessive abrasive will lead to a decreased copper removal rate. The initial step height values of the multilayer copper wafers were all about 2500Å, and after being polished for 30s, the remaining values of step height of slurry A, B, C and D were 717 Å, 906 Å, 1222 Å and 1493 Å. It indicates that alkaline copper slurries with different abrasive concentrations all had a good planarization performance on copper patterned wafer CMP. As the abrasive concentration increased, the planarization capability was enhanced.


2009 ◽  
Vol 60 (11) ◽  
pp. 2759-2766 ◽  
Author(s):  
C. Murphy ◽  
P. Hawes ◽  
D. J. Cooper

The ability of reed beds to remove significant levels of metals from effluent streams is well cited in the literature. Various methods of removal have been postulated and demonstrated including physical methods such as filtration and settlement, precipitation when the metal is present as a salt and adsorption to organic species or take up by macrophytes when the metal is in a soluble or ionic form. Consequently, reed beds have been used in a variety of applications for metal removal in water treatment processes. The distillation process for whisky generates an effluent containing a significant amount of copper which is scoured from the copper stills during the process and cleaning operations. High soluble copper concentrations can breach discharge consents. A horizontal subsurface flow reed bed system has been designed and installed for copper removal at a distillery in Scotland. This paper presents the findings of the literature search, outlines the design of the bed and reviews the performance results.


2015 ◽  
Vol 3 (3) ◽  
pp. 1669-1677 ◽  
Author(s):  
Mohammad S. Al-Harahsheh ◽  
Kamel Al Zboon ◽  
Leema Al-Makhadmeh ◽  
Muhannad Hararah ◽  
Mehaysen Mahasneh

Sign in / Sign up

Export Citation Format

Share Document