scholarly journals Targeting cytochrome P450 46A1 and brain cholesterol 24-hydroxylation to treat neurodegenerative diseases

2021 ◽  
Author(s):  
Irina Pikuleva

The brain cholesterol content is determined by the balance between the pathways of in situ biosynthesis and cholesterol elimination via 24-hydroxylation catalyzed by cytochrome P450 46A1 (CYP46A1). Both pathways are tightly coupled and determine the rate of brain cholesterol turnover. Evidence is accumulating that modulation of CYP46A1 activity by gene therapy or pharmacologic means could be beneficial in the case of neurodegenerative and other brain diseases and affect brain processes other than cholesterol biosynthesis and elimination. This minireview summarizes these other processes, most common of which include abnormal protein accumulation, memory, and cognition, motor behavior, gene transcription, protein phosphorylation as well as autophagy and lysosomal processing. The unifying mechanisms, by which these processes could be affected by CYP46A targeting are also discussed.

2020 ◽  
Author(s):  
Giulia Birolini ◽  
Marta Valenza ◽  
Ilaria Ottonelli ◽  
Alice Passoni ◽  
Monica Favagrossa ◽  
...  

AbstractSupplementing brain cholesterol is emerging as a potential treatment for Huntington’s disease (HD), a genetic neurodegenerative disorder characterized, among other abnormalities, by inefficient brain cholesterol biosynthesis. However, delivering cholesterol to the brain is challenging due to the bloodbrain barrier (BBB), which prevents it from reaching the striatum, especially, with therapeutically relevant doses.Here we describe the distribution, kinetics, release, and safety of novel hybrid polymeric nanoparticles made of PLGA and cholesterol which were modified with an heptapeptide (g7) for BBB transit (hybrid-g7-NPs-chol). We show that these NPs rapidly reach the brain and target neural cells. Moreover, deuterium-labeled cholesterol from hybrid-g7-NPs-chol is released in a controlled manner within the brain and accumulates over time, while being rapidly removed from peripheral tissues and plasma. We confirm that systemic and repeated injections of the new hybrid-g7-NPs-chol enhanced endogenous cholesterol biosynthesis, prevented cognitive decline, and ameliorated motor defects in HD animals, without any inflammatory reaction.In summary, this study provides insights about the benefits and safety of cholesterol delivery through advanced brain-permeable nanoparticles for HD treatment.


Development ◽  
1991 ◽  
Vol 112 (4) ◽  
pp. 981-995 ◽  
Author(s):  
L. Boyd ◽  
E. O'Toole ◽  
C.S. Thummel

Metamorphosis in Drosophila is triggered by a pulse of the steroid hormone ecdysone at the end of larval development. Ecdysone initiates a genetic hierarchy that can be visualized as a series of puffs in the larval salivary gland polytene chromosomes. The E74 gene is responsible for the early ecdysone-inducible puff at position 74EF and encodes two related DNA-binding proteins which appear to play a regulatory role in the hierarchy. Here we describe the spatial and temporal patterns of E74A RNA and protein expression at the onset of metamorphosis. We use in situ hybridization, antibody stains, and western and northern blot analyses to follow E74A expression from its initial appearance as nascent transcripts on the polytene chromosomes, to spliced mRNA, to post-translationally modified nuclear E74A protein. E74A is expressed in a wide variety of late-third instar tissues, suggesting that it plays a broad pleiotropic role in response to the hormone. In early prepupae, when the overall levels of E74A mRNA are decreasing, relatively high levels of E74A RNA persist in the gut, peripodial membranes of the imaginal discs, and proliferation centers of the brain. The spatial distribution of nuclear E74A protein correlates with the RNA distribution with the single exception that no E74A protein can be detected in the proliferation centers of the brain. There is also a temporal discrepancy between E74A mRNA and protein accumulation. The peak of E74A protein induced by the late larval ecdysone pulse follows the peak of E74A mRNA by approximately 2 h. This delay is not seen in 10 h prepupae, when the next pulse of ecdysone induces the simultaneous expression of E74A mRNA and protein. We discuss possible mechanisms for post-transcriptional regulation of E74A expression and suggest that the unusually long and complex 5′ leader in the E74A mRNA may regulate its translation.


Acta Naturae ◽  
2016 ◽  
Vol 8 (1) ◽  
pp. 58-73 ◽  
Author(s):  
A. M. Petrov ◽  
M. R. Kasimov ◽  
A. L. Zefirov

Cholesterol is an important constituent of cell membranes and plays a crucial role in the compartmentalization of the plasma membrane and signaling. Brain cholesterol accounts for a large proportion of the bodys total cholesterol, existing in two pools: the plasma membranes of neurons and glial cells and the myelin membranes . Cholesterol has been recently shown to be important for synaptic transmission, and a link between cholesterol metabolism defects and neurodegenerative disorders is now recognized. Many neurodegenerative diseases are characterized by impaired cholesterol turnover in the brain. However, at which stage the cholesterol biosynthetic pathway is perturbed and how this contributes to pathogenesis remains unknown. Cognitive deficits and neurodegeneration may be associated with impaired synaptic transduction. Defects in cholesterol biosynthesis can trigger dysfunction of synaptic transmission. In this review, an overview of cholesterol turnover under physiological and pathological conditions is presented (Huntingtons, Niemann-Pick type C diseases, Smith-Lemli-Opitz syndrome). We will discuss possible mechanisms by which cholesterol content in the plasma membrane influences synaptic processes. Changes in cholesterol metabolism in Alzheimers disease, Parkinsons disease, and autistic disorders are beyond the scope of this review and will be summarized in our next paper.


2018 ◽  
Author(s):  
Nicolas Musi ◽  
Joseph M. Valentine ◽  
Kathryn R. Sickora ◽  
Eric Baeuerle ◽  
Cody S. Thompson ◽  
...  

Tau protein accumulation is the most common pathology among degenerative brain diseases, including Alzheimer’s disease (AD), progressive supranuclear palsy (PSP), traumatic brain injury (TBI) and over twenty others1. Tau-containing neurofibrillary tangle (NFT) accumulation is the closest correlate with cognitive decline and cell loss, yet the mechanisms mediating tau toxicity are poorly understood. NFT-containing neurons do not die, which suggests secondary mechanisms are driving toxicity2. We evaluated gene expression patterns of NFT-containing neurons microdissected from AD patient brains3 and found they develop an expression profile consistent with cellular senescence described in dividing cells. This complex stress response induces a near permanent cell cycle arrest, adaptations to maintain survival, cellular remodeling, and metabolic dysfunction4. Moreover, senescent cells induce chronic degeneration of surrounding tissue through the secretion of pro-inflammatory, pro-apoptotic molecules termed the senescence-associated secretory phenotype (SASP)5. Using transgenic mouse models of tau-associated pathogenesis we found that NFTs induced a senescence-like phenotype including DNA damage, karyomegaly, mitochondrial dysfunction and SASP. Cdkn2a transcript level, a hallmark measure of senescence, directly correlated with brain atrophy and NFT load. This relationship extended to postmortem brain tissue from humans with PSP to indicate a phenomenon common to tau toxicity. Tau transgenic mice with late stage pathology were treated with senolytics to remove senescent cells. Despite the advanced age and disease progression, senolytic treatment reduced total NFT burden, neuron loss and ventricular enlargement; and normalized cerebral blood flow to that of non-transgenic control mice. Collectively, these findings indicate that NFTs induce cellular senescence in the brain, which contributes to neurodegeneration and brain dysfunction. Moreover, given the prevalence of tau protein deposition among neurodegenerative diseases, these findings have broad implications for understanding, and potentially treating, dozens of brain diseases.


Author(s):  
S. K. Pena ◽  
C. B. Taylor ◽  
J. Hill ◽  
J. Safarik

Introduction: Oxidized cholesterol derivatives have been demonstrated in various cell cultures to be very potent inhibitors of 3-hvdroxy-3- methylglutaryl Coenzyme A reductase which is a principle regulator of cholesterol biosynthesis in the cell. The cholesterol content in the cells exposed to oxidized cholesterol was found to be markedly decreased. In aortic smooth muscle cells, the potency of this effect was closely related to the cytotoxicity of each derivative. Furthermore, due to the similarity of their molecular structure to that of cholesterol, these oxidized cholesterol derivatives might insert themselves into the cell membrane, alter membrane structure and function and eventually cause cell death. Arterial injury has been shown to be the initial event of atherosclerosis.


1992 ◽  
Vol 57 (1) ◽  
pp. 194-203 ◽  
Author(s):  
Karel Šindelář ◽  
Vojtěch Kmoníček ◽  
Marta Hrubantová ◽  
Zdeněk Polívka

(Arylthio)benzoic acids IIa - IIe and VIb - VId were transformed via the acid chlorides to the N,N-dimethylamides which were reduced either with diborane "in situ" or with lithium aluminium hydride to N,N-dimethyl-(arylthio)benzylamines Ia - Ie and Vb - Vd. Leuckart reaction of the aldehydes IX and X with dimethylformamide and formic acid afforded directly the amines Va and Ve. Demethylation of the methoxy compounds Ia and Ve with hydrobromic acid resulted in the phenolic amines If and Vf. The most interesting N,N-dimethyl-4-(phenylthio)benzylamine (Va) hydrochloride showed affinity to cholinergic and 5-HT2 serotonin receptors in the rat brain and some properties considered indicative of antidepressant activity (inhibition of serotonin re-uptake in the brain and potentiation of yohimbine toxicity in mice).


2020 ◽  
Vol 31 (6) ◽  
pp. 681-689
Author(s):  
Jalal Mirakhorli ◽  
Hamidreza Amindavar ◽  
Mojgan Mirakhorli

AbstractFunctional magnetic resonance imaging a neuroimaging technique which is used in brain disorders and dysfunction studies, has been improved in recent years by mapping the topology of the brain connections, named connectopic mapping. Based on the fact that healthy and unhealthy brain regions and functions differ slightly, studying the complex topology of the functional and structural networks in the human brain is too complicated considering the growth of evaluation measures. One of the applications of irregular graph deep learning is to analyze the human cognitive functions related to the gene expression and related distributed spatial patterns. Since a variety of brain solutions can be dynamically held in the neuronal networks of the brain with different activity patterns and functional connectivity, both node-centric and graph-centric tasks are involved in this application. In this study, we used an individual generative model and high order graph analysis for the region of interest recognition areas of the brain with abnormal connection during performing certain tasks and resting-state or decompose irregular observations. Accordingly, a high order framework of Variational Graph Autoencoder with a Gaussian distributer was proposed in the paper to analyze the functional data in brain imaging studies in which Generative Adversarial Network is employed for optimizing the latent space in the process of learning strong non-rigid graphs among large scale data. Furthermore, the possible modes of correlations were distinguished in abnormal brain connections. Our goal was to find the degree of correlation between the affected regions and their simultaneous occurrence over time. We can take advantage of this to diagnose brain diseases or show the ability of the nervous system to modify brain topology at all angles and brain plasticity according to input stimuli. In this study, we particularly focused on Alzheimer’s disease.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Vijay R. Varma ◽  
H. Büşra Lüleci ◽  
Anup M. Oommen ◽  
Sudhir Varma ◽  
Chad T. Blackshear ◽  
...  

AbstractThe role of brain cholesterol metabolism in Alzheimer’s disease (AD) remains unclear. Peripheral and brain cholesterol levels are largely independent due to the impermeability of the blood brain barrier (BBB), highlighting the importance of studying the role of brain cholesterol homeostasis in AD. We first tested whether metabolite markers of brain cholesterol biosynthesis and catabolism were altered in AD and associated with AD pathology using linear mixed-effects models in two brain autopsy samples from the Baltimore Longitudinal Study of Aging (BLSA) and the Religious Orders Study (ROS). We next tested whether genetic regulators of brain cholesterol biosynthesis and catabolism were altered in AD using the ANOVA test in publicly available brain tissue transcriptomic datasets. Finally, using regional brain transcriptomic data, we performed genome-scale metabolic network modeling to assess alterations in cholesterol biosynthesis and catabolism reactions in AD. We show that AD is associated with pervasive abnormalities in cholesterol biosynthesis and catabolism. Using transcriptomic data from Parkinson’s disease (PD) brain tissue samples, we found that gene expression alterations identified in AD were not observed in PD, suggesting that these changes may be specific to AD. Our results suggest that reduced de novo cholesterol biosynthesis may occur in response to impaired enzymatic cholesterol catabolism and efflux to maintain brain cholesterol levels in AD. This is accompanied by the accumulation of nonenzymatically generated cytotoxic oxysterols. Our results set the stage for experimental studies to address whether abnormalities in cholesterol metabolism are plausible therapeutic targets in AD.


Sign in / Sign up

Export Citation Format

Share Document