scholarly journals Polylactic Acid/Cellulose Fibres Based Composites for Food Packaging Applications

2017 ◽  
Vol 54 (4) ◽  
pp. 673-677 ◽  
Author(s):  
Elisabeta Elena Popa ◽  
Maria Rapa ◽  
Ovidiu Popa ◽  
Gabriel Mustatea ◽  
Vlad Ioan Popa ◽  
...  

PLA-based composites containing CF in the range 0 to 10 wt. % were prepared by melt mixing technique. The prepared composites were investigated in terms of processability, chemical structure (by Attenuated total reflectance - Fourier Transform Infrared - ATR-FT-IR analysis), thermal (Differential Scanning Calorimetry - DSC), optical properties (using UV-Vis spectrometry), barrier and migration in distilled water. Also, the behaviour of PLA based composites at sterilization was performed by examination the changes in their chemical structure. This study shows the feasibility of improving of PLA properties by using cellulose fibres, designed for flexible food packaging.

1986 ◽  
Vol 40 (5) ◽  
pp. 632-635 ◽  
Author(s):  
Robert G. Messerschmidt

A novel geometry for internal reflection elements is described. These elements have been found most useful in the FT-IR analysis of samples by attenuated total reflectance (ATR). Both single and multiple internal reflection elements are described. These elements provide three basic benefits. First, the geometry is such that an element may be exchanged for another of differing angle of incidence without the need for optical realignment of the sampling accessory. Second, for a given element thickness and width, the design allows a larger aperture over the conventional designs (parallelograms and trapezoids) for angles of incidence greater than 45 degrees, resulting in better sensitivity. Third, the elements are of a simple design, and are easy to fabricate.


2021 ◽  
Author(s):  
Hongying Chu ◽  
Huabei Li ◽  
Xiaoyan Sun ◽  
Yaowang Zhang

Abstract In this paper, we synthesized a kind of bio-based plasticizer epoxidized linoleic acid cardanol ester(ELCE) from cardanol and linoleic acid. Its chemical structure was characterized with FT-IR and 1H NMR. Polyvinyl chloride(PVC) blends plasticized with ELCE were prepared via thermoplastic blending with torque rheometer. The performance including torque, mechanical property, thermal stability, plasticizing property and migration resistance of plasticized PVC blends were investigated and compared with plasticized PVC blends with commercial plasticizer dioctyl phthalate(DOP). The results showed that ELCE improved thermal stability of PVC blends. ELCE played more excellent plasticizing effect on PVC blends than DOP. The better solvent extraction resistance and volatile resistance of ELCE make it impossible to completely replace DOP in PVC products.


2019 ◽  
Vol 138 (6) ◽  
pp. 4349-4358 ◽  
Author(s):  
K. Fila ◽  
M. Gargol ◽  
M. Goliszek ◽  
B. Podkościelna

Abstract The aim of this study was the synthesis of three different epoxy compounds based on naphthalene-2,7-diol (2,7-NAF.EP, 2,7-NAF.WEP, 2,7-NAF.P.EP) and then their cross-linking by triethylenetetramine (TETA). All epoxides were prepared by the reaction of naphthalene-2,7-diol with epichlorohydrin but under different conditions and with other catalysts. The structures of the obtained compounds before and after the cross-linking reactions were confirmed by the attenuated total reflectance Fourier transform infrared spectroscopy (ATR/FT-IR). The ATR/FT-IR spectra of cross-linked compounds show disappearance of the C–O–C bands (about 915 cm−1) derived from the epoxy groups. DSC and TG/DTG measurements indicated that the obtained materials possess good thermal resistance; they are stable up to about 250 °C. The hardness of the cross-linked products was determined using the Shore D method. The highest value of hardness was obtained for the 2,7-NAF.EP-POL. Additionally, the UV–Vis absorption spectra of the obtained polymers were registered and evaluated.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
M. P. Amaya-Gómez ◽  
L. M. Sanabria-Rivas ◽  
A. M. Díaz-Lasprilla ◽  
C. Ardila-Suárez ◽  
R. H. Castro-García ◽  
...  

Polymer and surfactant flooding are widely applied processes in enhanced oil recovery (EOR) in which viscous polymers or surfactants aqueous solutions are introduced in oil reservoirs to rise the recovery of the remaining oil. In this regard, one of the challenges of EOR practices is the use of efficient but low-cost viscosifier and surfactant polymers. This work is aimed at synthesizing a polyglycerol derived from the biodegradable and nontoxic monomer, glycerol, and evaluating the effect of its copolymerization on rheological and interfacial properties, which were tested in water and brine for the former and in the water/oil system for the last properties. The copolymers were synthesized using a polyglycerol backbone, acrylic acid, lactic acid, and oleic acid. The chemical structure of copolymers was characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetry (TG), and differential scanning calorimetry (DSC). The viscosity and the interfacial tension (IFT) of polymeric solutions were tested. Thus, the viscosity and surface performance of the prepared polymer solutions in distilled water and brine were analyzed according to the structure of the synthesized polymers. The results showed that the synthesized polymers modified water viscosity and surface tension between water and oil. The developed polymers could be candidates for applications in enhanced oil recovery and related applications.


2016 ◽  
Vol 16 (3) ◽  
pp. 119-127 ◽  
Author(s):  
Krzysztofa Szuman ◽  
Izabella Krucińska ◽  
Maciej Boguń ◽  
Zbigniew Draczyński

Abstract This study presents the results of research concerning fabrication of nonwovens from biodegradable polymer blends using the melt-blown method. The experiments performed within the framework of the research confirmed the possibility of obtaining polymer composites based on polylactide (PLA) with poly(hydroxyalkanoates) (PHA) and another aliphatic-aromatic copolyester. The obtained products were subjected to the analyses of chemical structure using the Fourier Transform Infrared Spectroscopy(FTIR) Attenuated Total Reflectance(ATR) method. The physical and mechanical properties of the fabricated nonwoven layers were also tested, which confirmed a wide spectrum of their applicability, depending on the polymer composition used in production.


Sign in / Sign up

Export Citation Format

Share Document