scholarly journals Encapsulation of Three Different Crude Extracts Rich in Triterpenes in a Biocompatible Polymer and their Evaluation in vitro for further Applications as Anti-inflammatory and/or Anti-tumour Alternative Therapeutic Agents

2019 ◽  
Vol 56 (1) ◽  
pp. 282-284
Author(s):  
Marius Biris ◽  
Adrian Gluhovschi ◽  
Madalina Boruga ◽  
Voichita Lazureanu ◽  
Iren Moza ◽  
...  

Medicinal plants continue to be of real interest to researchers in interdisciplinary fields such as chemistry, pharmacy, medicine. Due to the metabolites in which it abounds, the plant material can successfully represent both a prophylactic and curative treatment. At present, countless studies, both in vitro and in vivo, are conducted to elucidate the pharmacological effects and establish the mechanisms involved. The actual experiment was purposed to evaluate the activity of raw birch bark, apple pomace and olive leaves extracts rich in triterpenes, formulated as PLGA nanoparticles, on normal/healthy different cell lines immortalized and of primary origin, such as keratinocytes, dermal fibroblasts, and gingival fibroblasts.

2020 ◽  
Vol 01 ◽  
Author(s):  
Sharon O. Azubuike-Osu ◽  
Ikenna C. Ohanenye ◽  
Claus Jacob ◽  
Chukwunonso E.C.C. Ejike ◽  
Chibuike C. Udenigwe

Abstract: Various medicinal plants contain phenolic compounds, which are useful in the treatment of many disease conditions. Particularly, vitexin and its isomer, isovitexin, possess many pharmacological effects including antioxidant, anti-inflammatory, anticancer, antidiabetic, neuroprotective, and antinociceptive activities. Current research has provided evidence for the prospective use of vitexin and isovitexin in the formulation of medicinal products useful in the prevention and treatment of specific ailments. The aim of this review was therefore to examine the influence of vitexin and isovitexin on the vascular system as well as the possible mechanisms through which the flavonoids exert their effects. The review also discussed the importance of vitexin and isovitexin in cardiovascular health through the vascular endothelium. In vivo and in vitro studies suggest that vitexin and isovitexin play a cardioprotective role during ischaemic reperfusion injury and angiogenesis, while isovitexin decreases perfusion pressure and increases the bioavailability of nitric oxide. Taken together, vitexin and isovitexin are promising as therapeutic agents for the formulation of nutraceuticals for the prevention, management and treatment of cardiovascular diseases.


2021 ◽  
Vol 22 (8) ◽  
pp. 4087
Author(s):  
Maria Quitério ◽  
Sandra Simões ◽  
Andreia Ascenso ◽  
Manuela Carvalheiro ◽  
Ana Paula Leandro ◽  
...  

Insulin is a peptide hormone with many physiological functions, besides its use in diabetes treatment. An important role of insulin is related to the wound healing process—however, insulin itself is too sensitive to the external environment requiring the protective of a nanocarrier. Polymer-based nanoparticles can protect, deliver, and retain the protein in the target area. This study aims to produce and characterize a topical treatment for wound healing consisting of insulin-loaded poly-DL-lactide/glycolide (PLGA) nanoparticles. Insulin-loaded nanoparticles present a mean size of approximately 500 nm and neutral surface charge. Spherical shaped nanoparticles are observed by scanning electron microscopy and confirmed by atomic force microscopy. SDS-PAGE and circular dichroism analysis demonstrated that insulin preserved its integrity and secondary structure after the encapsulation process. In vitro release studies suggested a controlled release profile. Safety of the formulation was confirmed using cell lines, and cell viability was concentration and time-dependent. Preliminary safety in vivo assays also revealed promising results.


2020 ◽  
Vol 22 (1) ◽  
pp. 314
Author(s):  
Maria D. Dmitrieva ◽  
Anna A. Voitova ◽  
Maya A. Dymova ◽  
Vladimir A. Richter ◽  
Elena V. Kuligina

Background: The combination of the unique properties of cancer cells makes it possible to find specific ligands that interact directly with the tumor, and to conduct targeted tumor therapy. Phage display is one of the most common methods for searching for specific ligands. Bacteriophages display peptides, and the peptides themselves can be used as targeting molecules for the delivery of diagnostic and therapeutic agents. Phage display can be performed both in vitro and in vivo. Moreover, it is possible to carry out the phage display on cells pre-enriched for a certain tumor marker, for example, CD44 and CD133. Methods: For this work we used several methods, such as phage display, sequencing, cell sorting, immunocytochemistry, phage titration. Results: We performed phage display using different screening systems (in vitro and in vivo), different phage libraries (Ph.D-7, Ph.D-12, Ph.D-C7C) on CD44+/CD133+ and without enrichment U-87 MG cells. The binding efficiency of bacteriophages displayed tumor-targeting peptides on U-87 MG cells was compared in vitro. We also conducted a comparative analysis in vivo of the specificity of the accumulation of selected bacteriophages in the tumor and in the control organs (liver, brain, kidney and lungs). Conclusions: The screening in vivo of linear phage peptide libraries for glioblastoma was the most effective strategy for obtaining tumor-targeting peptides providing targeted delivery of diagnostic and therapeutic agents to glioblastoma.


2005 ◽  
Vol 201 (3) ◽  
pp. 385-396 ◽  
Author(s):  
Stefan Kraft ◽  
Tony Fleming ◽  
James M. Billingsley ◽  
Shih-Yao Lin ◽  
Marie-Hélène Jouvin ◽  
...  

High-affinity IgE receptor (FcεRI) cross-linking on mast cells (MCs) induces secretion of preformed allergy mediators (degranulation) and synthesis of lipid mediators and cytokines. Degranulation produces many symptoms of immediate-type allergic reactions and is modulated by adhesion to surfaces coated with specific extracellular matrix (ECM) proteins. The signals involved in this modulation are mostly unknown and their contribution to allergic reactions in vivo is unclear. Here we report the generation of monoclonal antibodies that potently suppress FcεRI-induced degranulation, but not leukotriene synthesis. We identified the antibody target as the tetraspanin CD63. Tetraspanins are membrane molecules that form multimolecular complexes with a broad array of molecules including ECM protein-binding β integrins. We found that anti-CD63 inhibits MC adhesion to fibronectin and vitronectin. Furthermore, anti-CD63 inhibits FcεRI-mediated degranulation in cells adherent to those ECM proteins but not in nonadherent cells. Thus the inhibition of degranulation by anti-CD63 correlates with its effect on adhesion. In support of a mechanistic linkage between the two types of inhibition, anti-CD63 had no effect on FcεRI-induced global tyrosine phosphorylation and calcium mobilization but impaired the Gab2–PI3K pathway that is known to be essential for both degranulation and adhesion. Finally, we showed that these antibodies inhibited FcεRI-mediated allergic reactions in vivo. These properties raise the possibility that anti-CD63 could be used as therapeutic agents in MC-dependent diseases.


2016 ◽  
Vol 60 (9) ◽  
pp. 5111-5121 ◽  
Author(s):  
Emma Hennessy ◽  
Claire Adams ◽  
F. Jerry Reen ◽  
Fergal O'Gara

ABSTRACTStatins are members of a class of pharmaceutical widely used to reduce high levels of serum cholesterol. In addition, statins have so-called “pleiotropic effects,” which include inflammation reduction, immunomodulation, and antimicrobial effects. An increasing number of studies are emerging which detail the attenuation of bacterial growth andin vitroandin vivovirulence by statin treatment. In this review, we describe the current information available concerning the effects of statins on bacterial infections and provide insight regarding the potential use of these compounds as antimicrobial therapeutic agents.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Cynthia St. Hilaire ◽  
Hui Jin ◽  
Yuting Huang ◽  
Dan Yang ◽  
Alejandra Negro ◽  
...  

Objective: The objective of this study was to develop a patient-specific induced pluripotent stem cell (iPSC)-based disease model to understand the process by which CD73-deficiency leads to vascular calcification in the disease, Arterial Calcification due to Deficiency of CD73 (ACDC). Approach & Results: ACDC is an autosomal recessive disease resulting from mutations in the gene encoding for CD73, which converts extracellular AMP to adenosine. CD73-deficiency manifests with tortuosity and vascular calcification of the medial layer of lower-extremity arteries, a pathology associated with diabetes and chronic kidney disease. We previously identified that dermal fibroblasts isolated from ACDC patients calcify in vitro, however in vivo studies of the vasculature are limited, as murine models of CD73 deficiency do not recapitulate the human disease phenotype. Thus, we created iPSCs from ACDC patients and control fibroblasts. ACDC and Control iPSCs form teratomas when injected in immune-compromised mice, however ACDC iPSC teratomas exhibit extensive calcifications. Control and ACDC iPSCs were differentiated down the mesenchymal lineage (MSC) and while there was no difference in chondrogenesis and adipogenesis, ACDC iMSCs underwent osteogenesis sooner than control iPSC, have higher activity of tissue-nonspecific alkaline phosphatase (TNAP), and lower levels of extracellular adenosine. During osteogenic simulation, TNAP activity in ACDC cells significantly increased adenosine levels, however, not to levels needed for functional compensatory stimulation of the adenosine receptors. Inhibition of TNAP with levimisole ablates this increase in adenosine. Treatment with an A2b adenosine receptor (AR) agonist drastically reduced TNAP activity in vitro, and calcification in ACDC teratomas, as did treatment with etidronate, which is currently being tested in a clinical trial on ACDC patients. Conclusions: These results illustrate a pro-osteogenic phenotype in CD73-deficient cells whereby TNAP activity attempts to compensate for CD73 deficiency, but subsequently induces calcification that can be reversed by activation of the A2bAR. The iPSC teratoma model may be used to screen other potential therapeutics for calcification disorders.


2015 ◽  
Vol 32 (8) ◽  
pp. 1170-1182 ◽  
Author(s):  
A. AlQathama ◽  
J. M. Prieto

Natural products continue to provide lead cytotoxic compounds for cancer treatment but less attention has been given to antimigratory compounds. We here systematically and critically survey more than 30 natural products with direct in vitro and in vivo pharmacological effects on migration and/or metastasis of melanoma cells and chart the mechanisms of action for this underexploited property.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2095-2095
Author(s):  
Zezhou Wang ◽  
Jaehyun Choi ◽  
Peter Dove ◽  
Chunlei Wang ◽  
Aaron D. Schimmer ◽  
...  

Abstract Although recent advances in the development of multiple myeloma (MM) therapies such as proteasome inhibitors and immunomodulatory agents have improved patient outcomes, MM remains incurable. Additional therapeutic agents with high efficacy, low toxicity and the convenience of oral administration are in high demand. BET inhibitors, such as JQ-1, have been considered as potential therapeutic agents for MM. In the present study, we report that TTI-281, an orally bioavailable BET inhibitor, displays anti-MM activity with a low toxicity profile in preclinical studies. First, TTI-281 was tested for binding and anti-tumor activity in vitro. BROMOscan and AlphaScreen assays demonstrated that TTI-281 bound to bromodomains of BRD2/BRD3/BRD4 with Kd values less than 10 nM. In MTS assays, TTI-281 inhibited the growth of MM cell lines (MM.1s, NCIH929, and RPMI-8826) with cell growth-inhibition (IC50) values less than 300 nM. Next, in vitro ADME screening and in vivo PK studies were conducted. Permeability assays using murine gastrointestinal epithelial cells indicated that TTI-281 had good permeability with little efflux liability (efflux ratio <1), suggesting favorable properties for oral absorption. Indeed, TTI-281 displayed excellent oral bioavailability in both mice and rats (93.1% and 91.8%, respectively). In addition, TTI-281 did not interfere with the metabolism of representative CYP isozyme substrates at concentrations up to 50 μM in pooled human liver microsomes. Data also suggested minimal potential for drug-drug interactions, allowing for the possible combination with first-line therapy to improve therapeutic and survival outcomes. Finally, TTI-281 was tested for anti-myeloma efficacy and tolerability in vivo. NOD-SCID mice (n=10/group) subcutaneously engrafted with the human myeloma cell line MM.1S were treated orally once daily for 21 days with different doses of TTI-281, vehicle control or the benchmark drug carfilzomib. TTI-281 reduced tumor growth in a dose-dependent manner in this MM xenograft model. At 30 mg/kg/day, TTI-281 led to a statistically significant decrease in tumor growth compared with the vehicle control and carfilzomib (reduced tumor volume: 67% after TTI-281 treatment vs 33% after carfilzomib treatment, p<0.0003). Furthermore, TTI-281 treatment was well tolerated, with no effect on body weight or other obvious toxicity. In summary, our preclinical data suggest that the orally available BET inhibitor TTI-281 has an excellent efficacy and safety profile, highlighting its potential as a promising drug candidate for myeloma therapy. Disclosures Wang: Trillium Therapeutics: Employment, Patents & Royalties. Choi:Trillium Therapeutics: Employment. Dove:Trillium Therapeutics: Employment, Patents & Royalties. Wang:Trillium Therapeutics: Employment. Schimmer:Novartis: Honoraria. Petrova:Trillium Therapeutics Inc: Employment, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Uger:Trillium Therapeutics: Employment, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Slassi:Trillium Therapeutics: Employment, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties.


2016 ◽  
Vol 136 (5) ◽  
pp. S95
Author(s):  
K.A. McHale ◽  
K. Balogh ◽  
H. Wang ◽  
S. Hollenbach ◽  
N. Christensen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document