scholarly journals Compressive Strength of Woven and Strand of Recycled Polyethylene Terephthalate (PET) Reinforced Concrete

2020 ◽  
Vol 57 (1) ◽  
pp. 263-271
Author(s):  
Andrei Mihai Baciu ◽  
Imre Kiss ◽  
Ilare Bordeasu ◽  
lavinia Madalina Micu

Woven fiber reinforced concrete is a material, which contains various quantities of polymer materials in composition, in addition to the conventional components of an ordinary concrete (mineral binder - cement, aggregates, water and additives). The present work refers to the concrete in which the reinforcement is made of polymeric materials (polyethylene terephthalate), originated from the recycling programs of PET-type packaging. The experimental program was aimed at constructing some samples of woven fiber reinforced concrete from recycled material coming from PET packaging wastes, their testing to the compression demands and the comparison of results with the characteristics of the standardized samples of concrete (class C30/37). Based on a sufficient number of determinations, certain correlations can be established between the compressive strength of the concrete at 28 days depending on the dosage of components (aggregate, binder, and reinforcement), water / cement ratio, reinforcement volume, etc., essential parameters from a compositional point of view. These correlations, customized by cement type and strength class, are very important to determine - with approximation - to what dosage of components (aggregate, binder, reinforcement) the respective level of compressive strength of concrete is obtained.

2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Pitcha Jongvivatsakul ◽  
Linh V. H. Bui ◽  
Theethawachr Koyekaewphring ◽  
Atichon Kunawisarut ◽  
Narawit Hemstapat ◽  
...  

In this paper, the performances of reinforced concrete (RC) beams strengthened in shear with steel fiber-reinforced concrete (SFRC) panels are investigated through experiment, analytical computation, and numerical analysis. An experimental program of RC beams strengthened by using SFRC panels, which were attached to both sides of the beams, is carried out to investigate the effects of fiber volume fraction, connection type, and number and diameter of bolts on the structural responses of the retrofitted beams. The current shear resisting model is also employed to discuss the test data considering shear contribution of SFRC panels. The experimental results indicate that the shear effectiveness of the beams strengthened by using SFRC panels is significantly improved. A three-dimensional (3D) nonlinear finite element (FE) analysis adopting ABAQUS is also conducted to simulate the beams strengthened in shear with SFRC panels. The investigation reveals the good agreement between the experimental and analytical results in terms of the mechanical behaviors. To complement the analytical study, a parametric study is performed to further evaluate the influences of panel thickness, compressive strength of SFRC, and bolt pattern on the performances of the beams. Based on the numerical and experimental analysis, a shear resisting model incorporating the simple formulation of average tensile strength perpendicular to the diagonal crack of the strengthened SFRC panels is proposed with the acceptable accuracy for predicting the shear contribution of the SFRC system under various effects.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Pu Zhang ◽  
Yiliang Huang ◽  
Yongqi Li ◽  
Jun Zhao ◽  
Hengqian Dong ◽  
...  

Ultrahigh-performance fiber-reinforced concrete (UHPFRC) is a new type of concrete with excellent performance and good application prospects. However, expensive heat curing or high-pressure curing was often adopted to ensure the sufficient compressive strength. This study focuses on improving the compressive strength and workability of UHPFRC by changing the composition materials and the mixture ratios under standard curing conditions. The 0-1 mm and 1∼3 mm sintered bauxite was adopted as coarse aggregate. UHPFRC with high compressive strength and good workability was developed by changing the water-binder ratios, by adding ground-granulated blast furnace slag (GGBFS) or fly ash, and by changing the bauxite content of different particle sizes. When the volume ratio of steel fiber was 3%, the recommend water to binder ratio was 0.194 according to this experiment, the dosage of GGBFS-replaced cement is recommended as 20%, the dosage of fly ash instead of silica fume is recommended as 30%. The recommend ratio of 0-1 mm and 1∼3 mm sintered bauxite was 1.51 : 1. Finally, a kind of UHPFRC material with a compressive strength of 152.4 MPa and a slump of 120 mm was developed under the standard curing conditions.


2011 ◽  
Vol 219-220 ◽  
pp. 1601-1607 ◽  
Author(s):  
Tammam Merhej ◽  
Xin Kai Li ◽  
De Cheng Feng

This paper presents the experimental investigation carried out to study the behavior of polypropylene fiber reinforced concrete (PPFRC) under compression and flexure. Crimped polypropylene fibers and twisted polypropylene fiber were used with 0.0%, 0.2%, 0.4% and 0.6% volume fractions. The influence of the volume fraction of each shape of polypropylene fiber on the compressive strength and flexural strength is presented. Empirical equations to predict the effect of polypropylene fiber on compressive and flexural strength of concrete were proposed using linear regression analysis. An increase of 27% in flexural strength was obtained when 0.6% volume fraction of twisted polypropylene fiber was added. It was also found that the contribution of fiber in flexural strength is more effective when twisted fibers were used. The compressive strength was found to be less affected by polypropylene fiber addition.


2014 ◽  
Vol 662 ◽  
pp. 24-28 ◽  
Author(s):  
Xi Du ◽  
You Liang Chen ◽  
Yu Chen Li ◽  
Da Xiang Nie ◽  
Ji Huang

With cooling tests on polypropylene fiber reinforced concrete and plain concrete that were initially subjected to different heating temperatures, the change of mechanical properties including mass loss, uniaxial compressive strength and microstructure were analyzed. The results show that the compressive strength of concrete tend to decrease with an increase in temperature. After experiencing high temperatures, the internal fibers of the polypropylene fiber reinforced concrete melted and left a large number of voids in it, thereby deteriorating the mechanical properties of concrete.


Author(s):  
Luis Octavio González Salcedo ◽  
Aydee Patricia Guerrero Zúñiga ◽  
Silvio Delvasto Arjona ◽  
Adrián Luis Ernesto Will

Resumen En diseño y construcción de estructuras de concreto, la resistencia a compresión lograda a los 28 días, es la especificación de control de estabilidad de la obra. La inclusión de fibras como reforzamiento de la matriz cementicia, ha permitido una ganancia en sus propiedades, además de la obtención de un material de alto desempeño; sin embargo, la resistencia a compresión sigue siendo la especificación a cumplir en la normatividad de la construcción. Las redes neuronales artificiales, como un símil de las neuronas biológicas, han sido utilizadas como herramientas de predicción de la resistencia a compresión en el concreto sin fibra. Los antecedentes en este uso, muestran que es de interés el desarrollo de aplicaciones en los concretos reforzados con fibras. En el presente trabajo, redes neuronales artificiales han sido elaboradas para predecir la resistencia a compresión en concretos reforzados con fibras de polipropileno. Los resultados de los indicadores de desempeño muestran que las redes neuronales artificiales elaboradas pueden realizar una aproximación adecuada al valor real de la propiedad mecánica, abriendo una futura e interesante agenda de investigación. Palabras ClavesResistencia a compresión; concreto reforzado con fibras; fibra de polipropileno; predicción; inteligencia artificial; redes neuronales artificiales.   Abstract In concrete structures’ design and construction, the compressive strength achieved at 28 days, is the work’s stability control specification. The inclusion of reinforcing fibers into the cementicious matrix, has allowed a gain in their properties, as well as obtaining a high performance material, however, the compressive strength remains the specification to meet the construction regulations. Artificial neural networks as a biological neurons’ simile have been used as tools for predicting the plain concrete compressive strength. The backgrounds in this application show that interest is the development of applications in fiber-reinforced concrete. In this paper, artificial neural networks have been developed to predict the compressive strength in polypropylene fiber reinforced concrete. The results of the performance indicators show that the developed artificial neural networks can perform an adequate approximation to the actual value of the mechanical property, opening an interesting future research.KeywordsCompressive strength, fiber-reinforced concrete, polypropylene fiber, prediction, artificial intelligence, artificial neural networks.


Sign in / Sign up

Export Citation Format

Share Document