scholarly journals Influence Factors on the Properties of Ultrahigh-Performance Fiber-Reinforced Concrete Cured under the Condition of Room Temperature

2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Pu Zhang ◽  
Yiliang Huang ◽  
Yongqi Li ◽  
Jun Zhao ◽  
Hengqian Dong ◽  
...  

Ultrahigh-performance fiber-reinforced concrete (UHPFRC) is a new type of concrete with excellent performance and good application prospects. However, expensive heat curing or high-pressure curing was often adopted to ensure the sufficient compressive strength. This study focuses on improving the compressive strength and workability of UHPFRC by changing the composition materials and the mixture ratios under standard curing conditions. The 0-1 mm and 1∼3 mm sintered bauxite was adopted as coarse aggregate. UHPFRC with high compressive strength and good workability was developed by changing the water-binder ratios, by adding ground-granulated blast furnace slag (GGBFS) or fly ash, and by changing the bauxite content of different particle sizes. When the volume ratio of steel fiber was 3%, the recommend water to binder ratio was 0.194 according to this experiment, the dosage of GGBFS-replaced cement is recommended as 20%, the dosage of fly ash instead of silica fume is recommended as 30%. The recommend ratio of 0-1 mm and 1∼3 mm sintered bauxite was 1.51 : 1. Finally, a kind of UHPFRC material with a compressive strength of 152.4 MPa and a slump of 120 mm was developed under the standard curing conditions.

2012 ◽  
Vol 598 ◽  
pp. 336-340
Author(s):  
Hisen Hua Lee ◽  
Yen Shuo Chen ◽  
Chi Wen Cheng

Abstract. Concrete as a most popular construction material has many advantages such as easiness to be formed into various shapes, common availability and relative low cost. However, the low tensile strength and brittleness are disadvantages for wider application of the material. In this study, an advanced material of high strength and strong abrasion resistance HMPE fiber was used to reinforce concrete properties. A series of experimental testing were carried out to examine the properties of both fresh and hardened HMPE fiber reinforced concrete. It was found that the addition of an HMPE fiber material in concrete may enhance its compressive strength as high as 20% increment without water-reducing admixture. If a water-reducing admixture was applied, the increment of compressive strength may reach as high as 25% for 1.5% volume ratio of fiber contained in concrete.


2021 ◽  
Vol 11 (3) ◽  
pp. 1048
Author(s):  
Asif Jalal ◽  
Luqmanul Hakim ◽  
Nasir Shafiq

This experimental study investigated the effects of polyvinyl alcohol (PVA) and copper-coated steel (CCS) on the mechanical properties and the post cracking behavior of fiber reinforced concrete (FRC). In designing high-performance concrete mixes, cement replacement materials are the essential ingredients. Therefore, the research objective was to investigate PVA and CCS fiber’s post-cracking performance in 100% cement concrete and concrete with 80% cement and 20% fly ash. The fiber content was fixed as a 0.3% volumetric fraction. CSS fibers required 15% more superplasticizer to achieve the desired slump of fresh concrete than the PVA fibers. Simultaneously, CCS fibers showed a 10% higher compressive strength than the concrete made of PVA fibers. Both fibers exhibited a similar effect in developing tensile and flexural strength. PVA fibers showed a value of 47 Gpa of secant modulus, and CCS fibers resulted in 37 Gpa in 100% cement concrete. In post-cracking behavior, CCS fibers showed better performance than the PVA fibers. The reason for this is that CCS showed 2.3 times the tensile strength of the PVA fibers. In comparing the two concretes, fly ash concrete showed about 10% higher compressive strength at 56 days and about 6% higher tensile and flexural strength. Similarly, fly ash concrete showed more than 15% first crack strength and flexural toughness than the 100% cement concrete in post-cracking behavior. Fiber-reinforced concrete containing PVA or CCS fibers showed enhanced post-cracking characteristics and its use could be preferred in structural applications.


2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


Sign in / Sign up

Export Citation Format

Share Document