scholarly journals Discrete ARMA Model Applied for Tumor Growth Inhibition Modeling and LQR-based Chemotherapy Optimization

2021 ◽  
Vol 18 ◽  
pp. 141-145
Author(s):  
Sotirios G. Liliopoulos ◽  
George S. Stavrakakis

Mathematical models for tumor growth inhibition (TGI) are an important tool in the battle against cancer allowing preclinical evaluation of potential anti-cancer drugs and treatment schedules. In this article, an autoregressive moving average (ARMA) model for cancer tumor growth is estimated based on laboratory data of TGI in mice and presented. The model was proven capable of describing with accuracy the tumor growth under single-agent chemotherapy. At the same time, an optimal control problem was formulated to identify optimal drug dosages. The linear quadratic regulator (LQR) controller was used with success in optimizing both periodic and intermittent chemotherapy treatment schedules reducing the tumor mass while keeping dosages under acceptable toxicity

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3298-3298 ◽  
Author(s):  
Christian Argueta ◽  
Hua Chang ◽  
Trinayan Kashyap ◽  
Sivan Elloul ◽  
Sharon Friedlander ◽  
...  

Abstract Background: XPO1 (Exportin-1/CRM1) is the non-redundant nuclear exporter of over 200 cargos including the major tumor suppressor proteins. Deregulated nuclear export by changes in XPO1 expression is a common characteristic for a broad range of cancers and may aid in the evasion of anti-neoplastic mechanisms. As a result, inhibition of XPO1 has emerged as a promising area of cancer treatment. The Selective Inhibitor of Nuclear Export (SINE) compounds, selinexor, as well as a second generation, KPT-8602, bind to the XPO1 cargo binding pocket and disrupt XPO1-mediated nuclear export, resulting in cancer specific cell death. Although selinexor has been evaluated in >1,500 patients and has manageable tolerability, KPT-8602 may have improved tolerability and efficacy based on decreased brain penetration in animal models allowing more frequent dosing. Currently, the safety, tolerability and efficacy of KPT-8602 is being evaluated in a phase 1 trial of patients with relapsed/refractory multiple myeloma (MM; NCT02649790). Since selinexor synergizes with a broad array of anti-MM agents in patients, KPT-8602 is an excellent candidate for combination therapies. In this study, we investigated the use and mechanism of combining KPT-8602 with the pan-histone deacetylase (HDAC) inhibitor, panobinostat, in MM cell lines and in a xenograft mouse model of MM. Methods : MM.1S cells were treated with single agent KPT-8602, panobinostat or a combination of both. The effects of KPT-8602 and/or panobinostat on cell viability were examined using standard viability assays after 72 hours of treatment. Total RNA or protein levels were examined after 24 hours using quantitative PCR or immunoblots, respectively. Immune compromised mice were injected subcutaneously with MM.1S cells. Tumors were allowed to grow to ~150 mm3before treatment. The mice were treated with vehicle, sub-therapeutic doses of KPT-8602 (5 mg/kg PO QDx5) or panobinostat (5 mg/kg IP QDx5) alone or in combination. Tumor growth and animal weights was monitored to determine tumor growth inhibition (TGI), tumor regression, and tolerability to treatment. The tumors were then harvested for immunohistochemical (IHC) analysis. Results : The combination of KPT-8602 and panobinostat was highly effective against MM.1S cell viability. A synergistic anti-cancer effect was observed against MM.1S cells grown in culture and in mice. In cells, the MTT IC50of KPT-8602 was shifted from 50 to 23 nM by the addition of sub cytotoxic concentrations of panobinostat. In mice, single agent treatment with KPT-8602 led to 96.5% tumor growth inhibition whereas panobinostat resulted in 69.4% tumor growth inhibition within 22 days. Remarkably, in the combination of KPT-8602 and panobinostat, 3 out of 8 tumors totally disappeared and the overall tumor regression was 95%, (Figure 1). Both drugs, as single agents and in combination were well tolerated and no significant changes in weight were observed. Gene and protein expression studies revealed that although both compounds target independent proteins (e.g. HDACs or XPO1), the combination significantly enhances markers of cell death (cleavage of PARP-1, caspase-3, etc.). Curiously, KPT-8602 enhances the inhibitory effect panobinostat has on deacetylation as evidenced by histone acetylation. Moreover, DNA damage, as indicated by ϒ-H2AX, significantly increases in the presence of both compounds. Conclusion : KPT-8602 and panobinostat are dissimilar drugs with unique mechanisms of action, and individually affect a broad range of cellular processes. Here we show that the combination of these drugs can dramatically increase the already potent anti-cancer properties of these compounds in MM cell lines. In addition, KPT-8602 enhances the inhibitory effect exerted by panobinostat on histone deacetylation, which coincides with an increase induction of DNA damage. It should be noted that both panobinostat and SINE compounds have been shown to downregulate checkpoint and DNA damage response (DDR) proteins (e.g. RAD51 and Chk1). We hypothesize that the combination of KPT-8602 and panobinostat promotes significant chromatin remodeling in the presence of a compromised DDR pathway, which destabilizes genomic integrity in MM cells and leads to a synergistic effect on cell viability. Together, these data provide rational support for the study of KPT-8602 and panobinostat in clinical trials. Figure 1 Figure 1. Disclosures Argueta: Karyopharm Therapeutics: Employment, Equity Ownership. Chang:Karyopharm Therapeutics: Employment, Equity Ownership. Kashyap:Karyopharm Therapeutics: Employment, Equity Ownership. Elloul:Rubius Therapeutics: Employment. Friedlander:Karyopharm Therapeutics: Employment. Lee:Karyopharm Therapeutics: Employment, Equity Ownership. Kauffman:Karyopharm Therapeutics Inc: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Shacham:Karyopharm Therapeutics: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Senapedis:Karyopharm Therapeutics: Employment, Equity Ownership. Baloglu:Karyopharm Therapeutics: Employment, Equity Ownership.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1843-1843 ◽  
Author(s):  
Pamela M Holland ◽  
Emmanuel Normant ◽  
Ammar Adam ◽  
Caroline M Armet ◽  
Rachel W O'Connor ◽  
...  

Abstract The transmembrane protein CD47 is an immunoglobulin superfamily member involved in multiple cellular processes, including cell migration, adhesion and T cell function. The interaction between CD47 and signal regulatory protein alpha (SIRPα), an inhibitory protein expressed on macrophages, prevents phagocytosis of CD47-expressing cells. CD47 was originally identified as a tumor antigen on human ovarian cancer and was subsequently shown to be expressed on multiple human tumor types, including both hematologic and solid tumors. In many hematologic cancers, high CD47 expression is associated with poor clinical outcomes. CD47 is also expressed at low levels on virtually all non-malignant cells, and loss of expression or changes in membrane distribution may serve as markers of aged or damaged cells, particularly on red blood cells (RBC). High expression of CD47 on tumors blocks phagocytic uptake, subsequent antigen cross-presentation and T cell activation, which collectively contribute to tumor immune evasion. Agents that block the CD47-SIRPα interaction can restore phagocytic uptake of CD47+ target cells and lower the threshold for macrophage activation, which can enhance the efficacy of therapeutic antibodies with ADCC-enabling activity. We developed and characterized a CD47 blocking antibody and evaluated its activity in multiple hematologic models. SRF231 is a fully human monoclonal antibody that binds with high affinity to human CD47 and blocks the CD47-SIRP▢ interaction. SRF231 promotes macrophage-mediated phagocytic clearance of several hematologic primary tumor samples and cell lines in vitro. For example, SRF231 increases phagocytosis of Raji tumor cell line targets with an EC50 of ~300 ng/ml. Enhanced phagocytosis is preferential for tumor cells over normal leukocytes and RBC. Tumor cell phagocytosis can be enhanced in the presence of opsonizing antibodies (e.g., anti-CD20 Ab) when co-administered with SRF231. In vivo efficacy of SRF231 was assessed in several preclinical murine xenograft models of hematologic malignancies. Notably, SRF231 administration led to profound tumor growth inhibition in models of multiple myeloma, diffuse large B cell lymphoma and Burkitt's lymphoma as a single agent and in combination with opsonizing antibodies. In the Raji xenograft model, single agent therapy leads to 112% tumor growth inhibition. This anti-tumor activity is at least partially dependent on macrophages, as depletion of macrophages via clodronate administration leads to reduced tumor growth inhibition. Tumor-associated macrophage (TAM) numbers and polarization status are also modulated by SRF231 treatment. In summary, the CD47 mAb SRF231 induces robust tumor cell phagocytosis and tumor clearance both alone and in combination with opsonizing antibodies in pre-clinical models of myeloma and lymphoma. These properties warrant further development of SRF231 in hematologic malignancies. SRF231 is currently in IND-enabling studies and is expected to enter clinical trials in 2017. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 3-4
Author(s):  
William Casey Wilson ◽  
John Richards ◽  
Robyn J Puro ◽  
Gabriela Andrejeva ◽  
Ben J Capoccia ◽  
...  

Upregulation of tumor CD47, the "don't eat me" signal, to evade immune surveillance is a common escape mechanism that evolves during cancer development, progression, and relapse. Previous studies have shown multiple myeloma (MM) cells leverage this mechanism through broad upregulation of CD47 compared to non-malignant plasma cells, making CD47 an attractive therapeutic target for this disease. We recently reported that AO-176, a clinical stage humanized anti-CD47 IgG2 antibody, possesses differentiated characteristics such as preferential binding of tumor cells compared to normal cells, a lack of binding to red blood cells, non-ADCC direct tumor killing and elicits immunogenic cell death with DAMP induction, all in addition to single-agent phagocytosis. In this study, AO-176's anti-tumor activity in MM was evaluated. Immunohistochemical analyses of MM patient tumors with upregulated CD47 expression showed infiltration of innate immune cells such as macrophages and dendritic cells, both previously shown to be involved in anti-CD47 antibody mechanisms of action. AO-176 binding was confirmed on human cell lines frequently used in MM xenograft models. AO-176 exerted substantial single agent in vivo anti-tumor activity in multiple MM xenograft models when dosed at 25 mg/kg, including significant tumor growth inhibition of RPMI-8226 xenografted mice, and complete responses (CRs) in (10/10) NCI-H929 xenografted mice. These CRs were durable, with treated mice tumor-free up to 120 days post antibody dosing. Immunohistochemical analysis of AO-176 treated tumors from both models showed increased numbers of macrophages and dendritic cells compared to controls. An AO-176 dose response study resulted in CRs and increases in overall survival down to 10 mg/kg, with CRs observed as low as 3 mg/kg during dosing. In addition, we found that large NCI-H929 tumors (up to 1600mm3) showed pronounced regression after AO-176 treatment. The anti-tumor activity of AO-176 was also evaluated in combination with several standard of care MM therapies. When combined with the proteasome inhibitor bortezomib, AO-176 treatment at both 10 mg/kg and 25 mg/kg resulted in profound RPMI-8226 xenograft growth inhibition, near-total CRs (19/20 mice), and extended survival at both doses. Combining AO-176 and the anti-CD38 antibody daratumumab or immunomodulatory drugs (lenalidomide/pomalidomide) both produced significant enhancement of anti-tumor activity in xenograft models. The combined regimen of AO-176 with daratumumab led to significant MM.1S tumor growth inhibition compared to AO-176 or daratumumab alone. Both lenalidomide and pomalidomide combined with AO-176 resulted in significantly increased MM.1S tumor growth inhibition and extended survival compared to AO-176 alone, with an increased number of CRs observed in the combination groups compared to monotherapy groups. In summary, the pre-clinical potent single agent activity and enhanced activity when combined with standard of care anti-MM agents, warrants further development of AO-176 in MM treatment. AO-176 is being evaluated in phase 1 clinical trials for the treatment of patients with solid tumors (NCT03834948) and with MM (NCT04445701). Disclosures Wilson: Arch Oncology: Current Employment, Current equity holder in private company. Richards:Arch Oncology: Current Employment, Current equity holder in private company. Puro:Arch Oncology: Current Employment, Current equity holder in private company. Andrejeva:Arch Oncology: Current Employment, Current equity holder in private company. Capoccia:Arch Oncology: Current Employment, Current equity holder in private company. Donio:Arch Oncology: Current Employment, Current equity holder in private company. Hiebsch:Arch Oncology: Current Employment, Current equity holder in private company. Chakraborty:Arch Oncology: Current Employment, Current equity holder in private company. Sung:Arch Oncology: Current Employment, Current equity holder in private company. Pereira:Arch Oncology: Current Employment, Current equity holder in private company.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3946-3946
Author(s):  
Justin Cidado ◽  
Scott Boiko ◽  
Theresa Proia ◽  
Haley Woods ◽  
Omid Tavana ◽  
...  

Abstract Apoptosis is controlled through the dynamic interactions of the Bcl2 protein family, and cancers have evolved mechanisms to hijack this pathway to evade apoptosis, often by upregulating anti-apoptotic proteins (e.g. Mcl1, Bcl2). This survival adaptation creates a dependency that could be exploited therapeutically, which is why considerable effort has been made to develop small molecule inhibitors of the anti-apoptotic Bcl2 family proteins. This class of drug was clinically validated with the approval of venetoclax, a selective Bcl2 inhibitor, for the treatment of CLL. Venetoclax is undergoing evaluation in numerous other clinical trials for predominantly hematologic malignancies. Despite impressive responses observed with venetoclax in CLL (ORR 79%), acquired resistance is beginning to emerge. Likewise, other hematologic indications are more intrinsically resistant to venetoclax, exhibiting much lower response rates in the respective Phase I clinical trials (AML = 38%, NHL = 44%, MM = 12%). Preclinical studies with venetoclax have reported increased levels of other anti-apoptotic proteins as a likely mechanism contributing to both de novo and acquired resistance. Therefore, combining cell death inducing agents that inhibit Mcl1 or BclxL could be a means of combating resistance. Inhibition of cyclin-dependent kinase 9 (CDK9), which regulates transcription elongation, has been reported to reduce protein levels of genes with short-lived transcripts and proteins, such as MCL1. AZD4573 is a novel and selective CDK9 inhibitor that shows potent single agent activity, inducing cell death in vitro and tumor regressions in vivo in a diverse set of hematologic cancers (Cidado et. al., AACR Annual Meeting 2018). AZD4573 is currently being evaluated in a Phase I clinical trial for patients with hematological malignancies (NCT03263637). This study evaluates whether combinations of AZD4573 with other cell death inducing agents could overcome de novo venetoclax monotherapy resistance. A panel of 12 AML and 6 DLBCL cell lines were treated for 6 h with venetoclax, AZD4573, and a selective BclxL probe compound (AZ'3202) either as single agents or in combinations and assayed for caspase activation. The Loewe model was used to calculate synergy scores to assess benefit over monotherapy, and combinations with scores >5 were deemed beneficial. Treatment with AZD4573+venetoclax and AZD4573+AZ'3202 resulted in beneficial combinations for 13/18 and 10/18 cell lines, respectively. On the other hand, venetoclax+AZ'3202 showed significant combination benefit in only two cell lines (NB4, SUDHL4), suggesting a primary dependency upon Mcl1 for most of these hematologic cancer cell lines. Interestingly, cell lines sensitive to single agent AZ'3202 (4 AML, 0 DLBCL) did not show any combination benefit when treated with AZD4573+venetoclax, highlighting the exquisite dependency of those four models upon BclxL and mutual exclusivity with Mcl1. Cell lines benefitting from the AZD4573+venetoclax combination tended to fall into one of two categories: having single agent activity to either agent that is enhanced by the combination or having no single agent activity but the combination shifts the cell line into a responder. SUDHL4 cells were sensitive to AZD4573 (caspase activation EC50 = 18 nM) but not venetoclax (EC50 = 476 nM) while OCI-AML3 was insensitive to both (EC50 > 30 µM). In vitro biomarker kinetic analysis revealed an increase in Mcl1 levels (~2-fold) after 3 h of venetoclax treatment that was abrogated upon combination treatment, providing a mechanistic rationale for the combination benefit. Furthermore, when tested in an OCI-AML3 tumor xenograft study in mice, AZD4573 or venetoclax monotherapy exhibited minimal tumor growth inhibition (44% and 16%, respectively) while the combination led to tumor regressions (64%) with minimal effect on body weight. In a SUDHL4 tumor xenograft study, venetoclax monotherapy displayed minimal tumor growth inhibition (25%), but intermittent dosing of AZD4573 exhibited 94% tumor growth inhibition. Still, combination therapy demonstrated a clear benefit as it led to complete tumor regressions with 6/8 mice remaining tumor-free until the end of study (150 days). Together, this work presents supporting evidence that combining cell death inducing agents would be effective at overcoming de novo or acquired resistance associated with monotherapy treatments. Disclosures Cidado: AstraZeneca: Employment, Equity Ownership. Boiko:AstraZeneca: Employment. Proia:AstraZeneca: Employment. Woods:AstraZeneca: Employment. Tavana:AstraZeneca: Employment. San Martin:AstraZeneca: Employment. Tron:AstraZeneca: Employment. Shao:AstraZeneca: Employment. Drew:AstraZeneca: Employment.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e14629-e14629
Author(s):  
B. Higgins ◽  
K. Packman ◽  
Y. Zhang ◽  
H. Char ◽  
M. Simcox ◽  
...  

e14629 Background: R1530 is a multikinase inhibitor currently in clinical phase I testing. Its inhibitory profile includes several kinases that play critical roles in cancer cell growth and division as well as tumor angiogenesis. These properties translate into a potent cytotoxicity in a wide range of cancer cell lines in vitro and tumor growth inhibition in human tumor xenografts. Preclinical studies were conducted to evaluate the effects of R alone and in combination with B and P in the Caki-1 RCC xenograft model. Methods: We initially evaluated the antitumor activity of optimal dose (OD) and 1/2 OD R alone and with OD B. This was followed up with testing of OD & 1/2 OD P ± OD B, along with triplets of 1/2 OD P + OD B + 1/2 OD R and OD P + OD B + 1/2 OD R. A final study compared 1/2 OD R to OD R triplets to attempt to increase tumor growth inhibition (TGI) and increase life span (ILS). Results: No doublets or triplets tested showed antagonism or enhanced toxicity. Antitumor activity and survival results are listed below (Table). Conclusions: 1/2 OD R + OD B or OD R + OD B doublets gave better TGI and ILS than monotherapy. Comparing these two doublets, TGI is better in the high dose combination but ILS is equivalent. All TGI and ILS are better in doublet P + B combinations over respective single agent arms except for TGI (but not ILS) for 1/2 OD P vs its correlative doublet with B. The OD P + B doublet gave better TGI and ILS than 1/2 OD P + B doublet. TGI and ILS do not differ between triplets containing OD R + 1/2 OD or OD P or for triplets containing the OD P + 1/2 OD or OD R. Therefore, either agent can be alternatively dose reduced without a loss of tumor response or detriment to survival in this preclinical model of RCC. [Table: see text] [Table: see text]


PLoS ONE ◽  
2012 ◽  
Vol 7 (10) ◽  
pp. e48654 ◽  
Author(s):  
Giovanna Bianchi ◽  
Fabio Morandi ◽  
Michele Cilli ◽  
Antonio Daga ◽  
Chiara Bocelli-Tyndall ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document