scholarly journals Targeting T cell activation in immuno-oncology

2019 ◽  
Vol 27 (S2) ◽  
Author(s):  
S. D. Saibil ◽  
P.S. Ohashi

The years since 2009 have seen tremendous progress in unlocking the curative potential of the immune system for the treatment of cancer. Much of that revolution in immuno-oncology has been fueled by the clinical success of immune checkpoint inhibitors, particularly those targeting the PD-1 axis. Unfortunately, many patients still fail to benefit from checkpoint blockade or other immunotherapies. An inability to fully activate antitumour T cells contributes in part to the failure of those therapies. Here, we review the basic biology of T cell activation, with particular emphasis on the essential role of the dendritic cell and the innate immune system in T cell activation. The current understanding of the multiple factors that govern T cell activation and how they impinge on tumour immunotherapy are also discussed. Lastly, treatment strategies to potentially overcome barriers to T cell activation and to enhance the efficacy of immunotherapy are addressed.

2021 ◽  
Vol 9 (1) ◽  
pp. e001460 ◽  
Author(s):  
Xiuting Liu ◽  
Graham D Hogg ◽  
David G DeNardo

The clinical success of immune checkpoint inhibitors has highlighted the central role of the immune system in cancer control. Immune checkpoint inhibitors can reinvigorate anti-cancer immunity and are now the standard of care in a number of malignancies. However, research on immune checkpoint blockade has largely been framed with the central dogma that checkpoint therapies intrinsically target the T cell, triggering the tumoricidal potential of the adaptive immune system. Although T cells undoubtedly remain a critical piece of the story, mounting evidence, reviewed herein, indicates that much of the efficacy of checkpoint therapies may be attributable to the innate immune system. Emerging research suggests that T cell-directed checkpoint antibodies such as anti-programmed cell death protein-1 (PD-1) or programmed death-ligand-1 (PD-L1) can impact innate immunity by both direct and indirect pathways, which may ultimately shape clinical efficacy. However, the mechanisms and impacts of these activities have yet to be fully elucidated, and checkpoint therapies have potentially beneficial and detrimental effects on innate antitumor immunity. Further research into the role of innate subsets during checkpoint blockade may be critical for developing combination therapies to help overcome checkpoint resistance. The potential of checkpoint therapies to amplify innate antitumor immunity represents a promising new field that can be translated into innovative immunotherapies for patients fighting refractory malignancies.


2017 ◽  
Vol 35 (7_suppl) ◽  
pp. 50-50
Author(s):  
Melissa Bersanelli ◽  
Augusto Vaglio ◽  
Nicola Sverzellati ◽  
Maricla Galetti ◽  
Monia Incerti ◽  
...  

50 Background: hypovitaminosis D is frequent in renal diseases but it was never reported in metastatic renal cell carcinoma (mRCC). The interaction between vitamin D and its receptor (VDR) has a key role for T-cell activation. Naïve T-cells do not express VDR and had very low expression of phospholipase C-γ1 (PLC-γ1), with low responsiveness to T-cell receptor (TCR). Initial TCR signaling induces VDR expression and upregulates PLC-γ1 via the kinase p38 pathway. VDR interaction with high concentrations of vitamin D and PLC-γ1 increase are required to trigger classical TCR signaling, increasing T-cell responsiveness. On these basis, we hypothesized that hypovitaminosis D could contribute to lower responsiveness to immune-checkpoint inhibitors (CKI). Methods: we assessed vitamin D levels of mRCC patients undergoing therapy with CKI, with the aim to reveal hypovitaminosis D, evaluate its prevalence and hypothesize its potential role in the outcome of treatment with CKI. Results: of 10 mRCC patients pretreated with tyrosine-kinase inhibitors, vitamin D levels assessed before the first treatment with nivolumab (anti-PD1 CKI) revealed deficiency in 80% of cases (8 patients). Hypovitaminosis D was severe ( < 20 ng/ml) in 7 cases and moderate ( < 30 ng/ml) in one. The 2 patients without deficiency (20%), had vitamin D values near to the lower limit of normality. Oral supplementation with cholecalciferol was given when necessary, likely confounding the possible influence of vitamin D deficiency on the outcome of CKI treatment. Vitamin D normal values after two months of therapy were recovered in the great majority of cases. Interestingly, the only patient who achieved a good objective response to treatment had normal values of vitamin D before therapy. Conclusions: hypovitaminosis D could have a relevant prevalence in mRCC patients. Considering the role of vitamin D in T-cell activation, assessment of its levels and initiation of a supplementation before immunotherapy should be considered to enhance responsiveness. On the basis of these observations, we are planning a perspective multicenter study to investigate the role of hypovitaminosis D in mRCC patients treated with CKI (PRoviDenCe study).


2021 ◽  
Vol 11 ◽  
Author(s):  
Bonnie L. Russell ◽  
Selisha A. Sooklal ◽  
Sibusiso T. Malindisa ◽  
Lembelani Jonathan Daka ◽  
Monde Ntwasa

Through genetic and epigenetic alterations, cancer cells present the immune system with a diversity of antigens or neoantigens, which the organism must distinguish from self. The immune system responds to neoantigens by activating naïve T cells, which mount an anticancer cytotoxic response. T cell activation begins when the T cell receptor (TCR) interacts with the antigen, which is displayed by the major histocompatibility complex (MHC) on antigen-presenting cells (APCs). Subsequently, accessory stimulatory or inhibitory molecules transduce a secondary signal in concert with the TCR/antigen mediated stimulus. These molecules serve to modulate the activation signal’s strength at the immune synapse. Therefore, the activation signal’s optimum amplitude is maintained by a balance between the costimulatory and inhibitory signals. This system comprises the so-called immune checkpoints such as the programmed cell death (PD-1) and Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and is crucial for the maintenance of self-tolerance. Cancers often evade the intrinsic anti-tumor activity present in normal physiology primarily by the downregulation of T cell activation. The blockade of the immune checkpoint inhibitors using specific monoclonal antibodies has emerged as a potentially powerful anticancer therapy strategy. Several drugs have been approved mainly for solid tumors. However, it has emerged that there are innate and acquired mechanisms by which resistance is developed against these therapies. Some of these are tumor-intrinsic mechanisms, while others are tumor-extrinsic whereby the microenvironment may have innate or acquired resistance to checkpoint inhibitors. This review article will examine mechanisms by which resistance is mounted against immune checkpoint inhibitors focussing on anti-CTL4-A and anti-PD-1/PD-Ll since drugs targeting these checkpoints are the most developed.


Vaccines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 409
Author(s):  
Enrique Gómez Alcaide ◽  
Sinduya Krishnarajah ◽  
Fabian Junker

Despite significant recent improvements in the field of immunotherapy, cancer remains a heavy burden on patients and healthcare systems. In recent years, immunotherapies have led to remarkable strides in treating certain cancers. However, despite the success of checkpoint inhibitors and the advent of cellular therapies, novel strategies need to be explored to (1) improve treatment in patients where these approaches fail and (2) make such treatments widely and financially accessible. Vaccines based on tumor antigens (Ag) have emerged as an innovative strategy with the potential to address these areas. Here, we review the fundamental aspects relevant for the development of cancer vaccines and the critical role of dendritic cells (DCs) in this process. We first offer a general overview of DC biology and routes of Ag presentation eliciting effective T cell-mediated immune responses. We then present new therapeutic avenues specifically targeting Fc gamma receptors (FcγR) as a means to deliver antigen selectively to DCs and its effects on T-cell activation. We present an overview of the mechanistic aspects of FcγR-mediated DC targeting, as well as potential tumor vaccination strategies based on preclinical and translational studies. In particular, we highlight recent developments in the field of recombinant immune complex-like large molecules and their potential for DC-mediated tumor vaccination in the clinic. These findings go beyond cancer research and may be of relevance for other disease areas that could benefit from FcγR-targeted antigen delivery, such as autoimmunity and infectious diseases.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kaitao Li ◽  
Zhou Yuan ◽  
Jintian Lyu ◽  
Eunseon Ahn ◽  
Simon J. Davis ◽  
...  

AbstractDespite the clinical success of blocking its interactions, how PD-1 inhibits T-cell activation is incompletely understood, as exemplified by its potency far exceeding what might be predicted from its affinity for PD-1 ligand-1 (PD-L1). This may be partially attributed to PD-1’s targeting the proximal signaling of the T-cell receptor (TCR) and co-stimulatory receptor CD28 via activating Src homology region 2 domain-containing phosphatases (SHPs). Here, we report PD-1 signaling regulates the initial TCR antigen recognition manifested in a smaller spreading area, fewer molecular bonds formed, and shorter bond lifetime of T cell interaction with peptide-major histocompatibility complex (pMHC) in the presence than absence of PD-L1 in a manner dependent on SHPs and Leukocyte C-terminal Src kinase. Our results identify a PD-1 inhibitory mechanism that disrupts the cooperative TCR–pMHC–CD8 trimolecular interaction, which prevents CD8 from augmenting antigen recognition, explaining PD-1’s potent inhibitory function and its value as a target for clinical intervention.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 834
Author(s):  
Frederike A. Hartl ◽  
Jatuporn Ngoenkam ◽  
Esmeralda Beck-Garcia ◽  
Liz Cerqueira ◽  
Piyamaporn Wipa ◽  
...  

The T cell antigen receptor (TCR) is expressed on T cells, which orchestrate adaptive immune responses. It is composed of the ligand-binding clonotypic TCRαβ heterodimer and the non-covalently bound invariant signal-transducing CD3 complex. Among the CD3 subunits, the CD3ε cytoplasmic tail contains binding motifs for the Src family kinase, Lck, and the adaptor protein, Nck. Lck binds to a receptor kinase (RK) motif and Nck binds to a proline-rich sequence (PRS). Both motifs only become accessible upon ligand binding to the TCR and facilitate the recruitment of Lck and Nck independently of phosphorylation of the TCR. Mutations in each of these motifs cause defects in TCR signaling and T cell activation. Here, we investigated the role of Nck in proximal TCR signaling by silencing both Nck isoforms, Nck1 and Nck2. In the absence of Nck, TCR phosphorylation, ZAP70 recruitment, and ZAP70 phosphorylation was impaired. Mechanistically, this is explained by loss of Lck recruitment to the stimulated TCR in cells lacking Nck. Hence, our data uncover a previously unknown cooperative interaction between Lck and Nck to promote optimal TCR signaling.


Sign in / Sign up

Export Citation Format

Share Document