scholarly journals Stability of Antibiotics for Intraperitoneal Administration in Extraneal 7.5% Icodextrin Peritoneal Dialysis Bags (Stab Study)

2016 ◽  
Vol 36 (4) ◽  
pp. 421-426 ◽  
Author(s):  
Dwarakanathan Ranganathan ◽  
Saiyuri Naicker ◽  
Steven C. Wallis ◽  
Jeffrey Lipman ◽  
Sharad K. Ratanjee ◽  
...  

Background and objectivesPatients with peritoneal dialysis (PD)-associated peritonitis may be advised to store PD-bags with pre-mixed antibiotics at home, although there is a paucity of antibiotic stability studies in the commonly used icodextrin solutions. The purpose of this study was to assess the stability of various antibiotics in PD-bags when stored at different temperatures over a 14-day period.Methods7.5% icodextrin PD-bags were dosed with gentamicin 20 mg/L ( n = 9), vancomycin 1,000 mg/L ( n = 9), cefazolin 500 mg/L ( n = 9) and ceftazidime 500 mg/L ( n = 9) as for intermittent dosing. Combinations of gentamicin/vancomycin ( n = 9), cefazolin/ceftazidime ( n = 9), and cefazolin/gentamicin ( n = 9) were also tested. Nine drug-free bags were used as controls. Bags were stored in triplicate at 37°C, room-temperature (25°C), and refrigeration (4°C). Antibiotic concentrations were quantified at various time intervals using validated chromatography. Storage duration was considered unstable if the concentration of the antibiotic dropped ≤ 90% of the initial value.ResultsGentamicin was stable for 14 days at all temperatures. Vancomycin was stable for 4 days at 37°C and for 14 days at both 25°C and 4°C. The gentamicin and vancomycin combination was stable for 4 days at 37°C and for 14 days at 25°C and 4°C. Cefazolin alone was stable for 24 hours at 37°C, 7 days at 25°C, and 14 days at 4°C. Ceftazidime alone was stable for only 6 hours at 37°C, 2 days at 25°C, and 14 days at 4°C. The cefazolin and ceftazidime combination was stable for 24 hours at 37°C, 2 days at 25°C, and 14 days at 4°C. The cefazolin and gentamicin combination was stable for 1 day at 37°C, 4 days at 25°C, and 14 days at 4°C.ConclusionsAntibiotics premixed in icodextrin PD-bags have varying stabilities with stability generally least at 37°C and best at 4oC, permitting storage for 14 days when refrigerated and pre-warming to body temperature prior to administration. Further research confirming the sterility of these antibiotic-containing bags is recommended.

2014 ◽  
Vol 34 (2) ◽  
pp. 212-218 ◽  
Author(s):  
Rahul P. Patel ◽  
Madhur D. Shastri ◽  
Mohammad Bakkari ◽  
Troy Wanandy ◽  
Matthew D. Jose

IntroductionThe objective of this study was to investigate the stability of ceftazidime and cephazolin in a 7.5% icodextrin or pH neutral peritoneal dialysis (PD) solution.MethodsCeftazidime and cephazolin were injected into either a 7.5% icodextrin or pH neutral PD bag to obtain the concentration of 125 mg/L of each antibiotic. A total of nine 7.5% icodextrin or pH neutral PD bags containing ceftazidime and cephazolin were prepared and stored at 1 of 3 different temperatures: 4°C in a domestic refrigerator; 25°C at room temperature; or 37°C (body temperature) in an incubator. An aliquot was withdrawn immediately before (0 hour) or after 12, 24, 48, 96, 120, 144, 168 and 336 hours of storage. Each sample was analyzed in duplicate for the concentration of ceftazidime and cephazolin using a stability-indicating high-performance liquid chromatography technique. Ceftazidime and cephazolin were considered stable if they retained more than 90% of their initial concentration. Samples were also assessed for pH, colour changes and evidence of precipitation immediately after preparation and on each day of analysis.ResultsCeftazidime and cephazolin in both types of PD solution retained more than 90% of their initial concentration for 168 and 336 hours respectively when stored at 4°C. Both of the antibiotics lost more than 10% of the initial concentration after 24 hours of storage at 25 or 37°C. There was no evidence of precipitation at any time under the tested storage conditions. Change in the pH and color was observed at 25 and 37°C, but not at 4°C.ConclusionPremixed ceftazidime and cephazolin in a 7.5% icodextrin or pH neutral PD solution is stable for at least 168 hours when refrigerated. This allows the preparation of PD bags in advance, avoiding the necessity for daily preparation. Both the antibiotics are stable for at least 24 hours at 25 and 37°C, permitting storage at room temperature and pre-warming of PD bags to body temperature prior to its administration.


Author(s):  
Michael Worlako Klu ◽  
John Antwi Apenteng ◽  
Bright Selorm Addy ◽  
David Ntinagyei Mintah ◽  
Elikem Katsekpor

Objective: Stability studies on flucloxacillin sodium in reconstituted oral suspensions were carried out. The experiment sought to investigate the effects that the different types of water for reconstitution and different storage conditions have on the stability of flucloxacillin sodium in the reconstituted suspensions.Methods: Suspensions of flucloxacillin sodium were reconstituted with tap water, commercial bottled water (Voltic brand was used), commercial sachet water (Everpure brand was used) treated tap water and distilled water and stored under refrigeration (RF) (4-6 °C), at room temperature (RT) (31-33 °C) and in a bowl of water (BW) (26-27 °C). Assay of flucloxacillin sodium was by iodimetry at predetermined time intervals for 8 d.Results: The amount of flucloxacillin sodium in all the suspensions stored under the various storage conditions reduced with time and at different rates. The percentage breakdown, a parameter of stability, was calculated for each reconstituted suspension stored at the different conditions investigated and they were as follows: commercial bottled water (RT-22.40 %, RF-9.90 % and BW-15.90 %), distilled water (RT-29.14 %, RF-18.0 %, BW-28.80 %), tap water (RT-25.0%, RF-14.60 % and BW-25.10 %) and commercial sachet water (RT-25.0 %, RF-10.17 % and BW-22.50 %).Conclusion: At the end of the study, it was found that those suspensions reconstituted with the commercial bottled water were the most stable and had the smallest breakdown of flucloxacillin sodium whereas those reconstituted with distilled water were the least stable and had the largest breakdown of flucloxacillin sodium. Commercial sachet water reconstituted more stable suspensions than tap water. Also, the suspensions stored under refrigeration were the most stable followed by those stored in a bowl of water. The formulations kept at room temperature were the least stable and thus, had the largest breakdown of flucloxacillin sodium.


2017 ◽  
Vol 74 (19) ◽  
pp. 1579-1583 ◽  
Author(s):  
Abdel Naser Zaid ◽  
Rania Shtayah ◽  
Ayman Qadumi ◽  
Mashour Ghanem ◽  
Rawan Qedan ◽  
...  

Abstract Purpose The stability of an extemporaneously prepared rosuvastatin suspension stored over 30 days under various storage conditions was evaluated. Methods Rosuvastatin suspension was extemporaneously prepared using commercial rosuvastatin tablets as the source of active pharmaceutical ingredient. The organoleptic properties, dissolution profile, and stability of the formulation were investigated. For the stability studies, samples of the suspension were stored under 2 storage conditions, room temperature (25 °C and 60% relative humidity) and accelerated stability chambers (40 °C and 75% relative humidity). Viscosity, pH, organoleptic properties, and microbial contamination were evaluated according to the approved specifications. High-performance liquid chromatography was used for the analysis and quantification of rosuvastatin in selected samples. Microbiological investigations were also conducted. Results The prepared suspension showed acceptable organoleptic properties. It showed complete release of rosuvastatin within 15 minutes. The pH of the suspension was 9.8, which remained unchanged during the stability studies. The microbiological investigations demonstrated that the preparation was free of any microbial contamination. In addition, the suspension showed stability within at least the period of use of a 100-mL rosuvastatin bottle. Conclusion Extemporaneously prepared rosuvastatin 20-mg/mL suspension was stable for 30 days when stored at room temperature.


2014 ◽  
Vol 5 (2) ◽  
Author(s):  
Irena Kasagić Vujanović ◽  
Dijana Jelić ◽  
Vesna Antunović ◽  
Biljana Jančić Stojanović ◽  
Darko Ivanović

Valuable information concerning stability of compounds can be obtained by using different media (water, hydrochloric acid or sodium hydroxide) for dissolution of active pharmaceutical substances. Furthermore, additional knowledge is gained by performing experiments at different temperatures. This research paper deals with the stability of amlodipine besylate and bisoprolol fumarate in different media at different temperatures, whereby certain conclusions are drawn. For stability assessment, chemical kinetics approach was used, and constant rate (k), half-time (t1/2) and activation energy (Ea) were used for prediction of compound stability degree. The stability of amlodipine besylate and bisoprolol fumarate were tested, both separately and in mixture, in water and in 0.01M HCl. All the investigated solutions were treated at two temperatures 25° and 70°C at the following time intervals: 0, 1 h, 24 h, 48 h and 72 h. Hydrophilic Interaction Liquid Chromatography – HILIC method, previously developed and validated, was used. On the basis of obtained results it was concluded that amlodipine-besylate was more stable in water than in acid medium, more stable in mixture rather than individually and more stable at lower temperatures. This was confirmed by the obtained values of monitored parameters: amlodipine besylate Ea = 30.68 kJ mol-1, k (25 °C) = 0.000333 mM h-1, k (70 °C) = 0.00169 mM h-1; amlodipine besylate in mixture Ea = 42,414 kJ mol-1, k (25 °C) = 1.27∙10-4 mM h-1, k (70 °C) = 0.0012 mM h-1. Based on the obtained approximate Ea value for bisoprolol fumarate in acid (59 kJ mol-1) and in water (56 kJ mol-1), bisoprolol fumarate showed excellent stability against the media in which it was studied. On the other hand, the temperature had a significant effect on the stability of bisoprolol fumarate. These results provide the relevant information about the stability of the tested active substances, and may be of importance during the development of an appropriate pharmaceutical product. A bigger influence on the stability of bisoprolol fumarate had a temperature effect.


1994 ◽  
Vol 28 (5) ◽  
pp. 572-576 ◽  
Author(s):  
Leigh M. Vaughan ◽  
Cathy Y. Poon

OBJECTIVE: To examine the stability of ceftazidime, vancomycin, and heparin, alone and in combination, in dialysis solution over six days at three temperatures. DESIGN: Nine 250-mL Dianeal PD-2 dextrose 1.5% bags were prepared with ceftazidime, vancomycin, and heparin alone and in combination at set concentrations of 100 μg/mL, 50 μg/mL, and 1 unit/mL, respectively. Three bags of each mixture were stored at 4, 25, and 37°C. Duplicate samples for analysis were removed from each bag at the following time points: premix, 0, 12, 24, 48, 72, 96, 120, and 144 hours. MAIN OURCOME MEASURES: Each sample was examined visually for signs of cloudiness and precipitation. Each sample was analyzed by stability-indicating HPLC assay for ceftazidime and vancomycin, with stability defined as less than 10 percent degradation of drug overtime. RESULTS: No color change or precipitation was observed in any bag. Vancomycin with or without heparin was stable for 5–6 days at 4, 25, and 37°C. Ceftazidime with and without heparin was stable for 6 days at 4°C, 4 days at 25°C, and less than 12 hours at 37 °C. Vancomycin plus ceftazidime with and without heparin was stable for 6 days at 4 °C and 25°C, and 4–5 days at 37 °C, Ceftazidime plus vancomycin with or without heparin was stable for 6 days at 4°C, 2–3 days at 25°C, and 12 hours at 37 °C. CONCLUSIONS: Bulk preparations of ceftazidime and vancomycin, alone and in combination and with or without heparin in Dianeal PD dextrose 1.5% solution, are sufficiently stable for use up to 6 days under refrigeration or 48 hours at room temperature.


1990 ◽  
Vol 10 (2) ◽  
pp. 157-160 ◽  
Author(s):  
Sandra E. Holmes ◽  
Stephen Aldous

This study examines the stability of both components of the antibacterial combination, cotrimoxazole (trimethoprim and sulphamethoxazole) in peritoneal dialysis fluid stored in polyvinyl chloride bags and glass ampoules at room temperature for up to nine days. Greater than 10% loss of trimethoprim occurred within three days for admixtures stored in plastic bags, whereas the original concentration remained virtually unchanged after nine days for similar solutions stored in glass ampoules. This indicated that the loss of trimethoprim observed in solutions stored in plastic bags was associated primarily with the nature of the container, presumably due to some form of uptake by or loss through the plastic. Greater than 10% loss of sulphamethoxazole occurred within two days for all admixtures examined, stored in either glass or plastic containers. This degree of loss was achieved within 12 h for one admixture stored in plastic. There was also the time-dependent appearance of an additional peak in HPLC analyses of these solutions, indicating that loss of sulphamethoxazole was due to chemical decomposition of the drug in the peritoneal dialysis fluid. The shelf-life of such admixtures would be limited by the stability of the sulphamethoxazole component, with the available data suggesting a shelf-life of 12 h for solutions stored at room temperature.


2002 ◽  
Vol 57 (3-4) ◽  
pp. 129-135
Author(s):  
Hsin-Yi Hsu ◽  
Chao-Chen Yang

The conductivities of the binary room-temperature molten salt (RTMS) systems ZnCl2-N-nbutylpyridinium chloride (BPC), ZnCl2 -1-ethyl-3-methylimidazolium chloride (EMIC) and ZnCl2 - benzyltriethylammonium chloride (BTEAC) have been measured at different temperatures and compositions by a d.c. four-probes method. The conductivities of the three RTMS are in the order ZnCl2-EMIC > ZnCl2-BPC > ZnCl2-BTEAC. In ZnCl2-BPC the conductivity at 70 to 150 °C, is maximal for 40 mol% ZnCl2. In ZnCl2 - EMIC, the conductivity below 130 °C is almost constant for 30 to 50 mol% ZnCl2 and has the lowest activation energy 25.21 kJ/mol. For these two systems, the conductivities decrease rapidly beyond 50 mol% ZnCl2 owing to the rapid increase in cross-linking and resultant tightening of the polyelectrolyte structure. As to the ZnCl2-BTEAC system, the conductivities at 110 - 150 °C decrease slowly for 30 - 60 mol% ZnCl2. The conductivities of the ZnCl2-EMICmelt are compared with those of the AlCl3-EMIC melt previously studied. The stability of the ZnCl2-EMIC melt system is explored by the effect of the environment on the conductivity and the Far Transmission Infra Red (FTIR) spectrum. It reveals that the effect is slight, and that the ZnCl2-EMIC melt may be classified as stable.


2002 ◽  
Vol 48 (12) ◽  
pp. 2242-2247 ◽  
Author(s):  
Bobby L Boyanton ◽  
Kenneth E Blick

Abstract Background: The stability and stoichiometric changes of analytes in plasma and serum after prolonged contact with blood cells in uncentrifuged Vacutainer® tubes were studied. Methods: We simultaneously investigated the stability of 24 analytes (a) after prolonged contact of plasma and serum with blood cells and (b) after immediate separation of plasma and serum (centrifuged twice at 2000g for 5 min). We verified biochemical mechanisms of observed analyte change by concomitant measurement of pH, Pco2, and Po2. Hemolysis was qualitatively and semiquantitatively assessed. All specimens were maintained at room temperature (25 °C) and analyzed in duplicate 0.5, 4, 8, 16, 24, 32, 40, 48, and 56 h after collection. Statistically significant changes from the 0.5 h mean were determined using repeated-measures ANOVA. The significant change limit was applied to determine clinically significant changes in measured analytes. Results: Fifteen of 24 analytes in plasma and serum maintained in contact with cells showed clinically relevant changes, with the degree of change more pronounced in most plasma specimens. All analytes in plasma and serum immediately separated from cells after collection were stable. Conclusion: Storage of uncentrifuged specimens beyond 24 h caused significant changes in most analytes investigated because of (a) glucose depletion and Na+,K+-ATPase pump failure; (b) the movement of water into cells, causing hemoconcentration; and (c) leakage of intracellular constituents and metabolites. Immediate separation of plasma or serum from cells provides optimal analyte stability at room temperature. When prolonged contact of plasma or serum with cells is unavoidable, use of serum is recommended because of the higher instability of plasma analytes.


Author(s):  
Surbhi Rohilla ◽  
Dinesh Chandra Bhatt

In the present investigation an attempt was made to focus on the stability aspects of itraconazole hollow microsphere at refrigerated condition, room temperature and at accelerated condition. In stability studies, more emphasis given on the effect of different temperature conditions on appearance, % drug content, % buoyancy and % drug release of formulation over a period of 6 months. Apart from above studies, SEM and FTIR analysis was done to determine any change in morphology or chemical structure. The results showed non-significant changes in pharmaceutical properties. From result findings, it can be concluded that the itraconazole hollow microspheres are stable formulation to sustain the drug in upper GIT for prolonged period of time.


2017 ◽  
Vol 37 (1) ◽  
pp. 51-55 ◽  
Author(s):  
Martin Wiesholzer ◽  
Alexandra Winter ◽  
Manuel Kussmann ◽  
Markus Zeitlinger ◽  
Petra Pichler ◽  
...  

BackgroundIntraperitoneal administration of antimicrobial agents is recommended for the treatment of peritoneal dialysis (PD)-related peritonitis. For home-based antimicrobial therapy it is common to supply patients with PD fluid bags with admixed antibiotic. Thus, the compatibility of meropenem with different PD fluids (PDFs), namely Extraneal, Physioneal 1.36% and Physioneal 2.27% (all Baxter Healthcare Corp., Deerfield, IL, USA), was investigated under varying storage conditions.MethodsMeropenem (Venus Pharma, Werne, Germany) was stored at 6°C and 25°C over 14 days and at 37°C over 24 hours. Drug concentration over time was determined using high performance liquid chromatography, drug activity by a diffusion disk method, diluent stability by visual inspection and drug adsorption was calculated. Blank PD fluids and deionized water were used as comparator solutions.ResultsCompared to water, the stability of meropenem was minimally lower in Extraneal but markedly reduced in both Physioneal solutions. No significant drug adsorption was detected for any PDF investigated.ConclusionsMeropenem is stable and compatible with Extraneal and might be stored for up to a week at refrigeration temperature (6°C). A loss of ∼20% of meropenem after 2 days at room temperature should be considered. Mixed Physioneal appears not suitable for storage at any temperature after meropenem has been admixed. A considerable drug degradation due to the warming up to body temperature through heating plates should further be taken into account in clinical practice.


Sign in / Sign up

Export Citation Format

Share Document