scholarly journals The Corrective Effect of Fucoidan, a Sulfated Polysaccharide Extracted from Brown Algae Fucus evanescens, in the Formation of a Specific Immune Response Against Seasonal Influenza Viruses in the Elderly

2020 ◽  
Vol 65 (3-4) ◽  
pp. 23-28
Author(s):  
T. S. Zaporozhets ◽  
S. P. Kryzhanovsky ◽  
E. V. Persianova ◽  
T. A. Kuznetsova ◽  
T. P. Smolina ◽  
...  
2020 ◽  
Vol 16 (11) ◽  
pp. e1008984
Author(s):  
Nicola F. Müller ◽  
Daniel Wüthrich ◽  
Nina Goldman ◽  
Nadine Sailer ◽  
Claudia Saalfrank ◽  
...  

Infecting large portions of the global population, seasonal influenza is a major burden on societies around the globe. While the global source sink dynamics of the different seasonal influenza viruses have been studied intensively, its local spread remains less clear. In order to improve our understanding of how influenza is transmitted on a city scale, we collected an extremely densely sampled set of influenza sequences alongside patient metadata. To do so, we sequenced influenza viruses isolated from patients of two different hospitals, as well as private practitioners in Basel, Switzerland during the 2016/2017 influenza season. The genetic sequences reveal that repeated introductions into the city drove the influenza season. We then reconstruct how the effective reproduction number changed over the course of the season. While we did not find that transmission dynamics in Basel correlate with humidity or school closures, we did find some evidence that it may positively correlated with temperature. Alongside the genetic sequence data that allows us to see how individual cases are connected, we gathered patient information, such as the age or household status. Zooming into the local transmission outbreaks suggests that the elderly were to a large extent infected within their own transmission network. In the remaining transmission network, our analyses suggest that school-aged children likely play a more central role than pre-school aged children. These patterns will be valuable to plan interventions combating the spread of respiratory diseases within cities given that similar patterns are observed for other influenza seasons and cities.


2020 ◽  
Vol 71 (1) ◽  
pp. 315-327 ◽  
Author(s):  
Raffael Nachbagauer ◽  
Peter Palese

Influenza viruses remain a severe burden to human health because of their contribution to overall morbidity and mortality. Current seasonal influenza virus vaccines do not provide sufficient protection to alleviate the annual impact of influenza and cannot confer protection against potentially pandemic influenza viruses. The lack of protection is due to rapid changes of the viral epitopes targeted by the vaccine and the often suboptimal immunogenicity of current immunization strategies. Major efforts to improve vaccination approaches are under way. The development of a universal influenza virus vaccine may be possible by combining the lessons learned from redirecting the immune response toward conserved viral epitopes, as well as the use of adjuvants and novel vaccination platforms.


2010 ◽  
Vol 15 (5) ◽  
Author(s):  
N Ikonen ◽  
M Strengell ◽  
L Kinnunen ◽  
P Österlund ◽  
J Pirhonen ◽  
...  

Since May 2009, the pandemic influenza A(H1N1) virus has been spreading throughout the world. Epidemiological data indicate that the elderly are underrepresented among the ill individuals. Approximately 1,000 serum specimens collected in Finland in 2004 and 2005 from individuals born between 1909 and 2005, were analysed by haemagglutination-inhibition test for the presence of antibodies against the 2009 pandemic influenza A(H1N1) and recently circulating seasonal influenza A viruses. Ninety-six per cent of individuals born between 1909 and 1919 had antibodies against the 2009 pandemic influenza virus, while in age groups born between 1920 and 1944, the prevalence varied from 77% to 14%. Most individuals born after 1944 lacked antibodies to the pandemic virus. In sequence comparisons the haemagglutinin (HA) gene of the 2009 pandemic influenza A(H1N1) virus was closely related to that of the Spanish influenza and 1976 swine influenza viruses. Based on the three-dimensional structure of the HA molecule, the antigenic epitopes of the pandemic virus HA are more closely related to those of the Spanish influenza HA than to those of recent seasonal influenza A(H1N1) viruses. Among the elderly, cross-reactive antibodies against the 2009 pandemic influenza virus, which likely originate from infections caused by the Spanish influenza virus and its immediate descendants, may provide protective immunity against the present pandemic virus.


2017 ◽  
Vol 16 (1) ◽  
pp. 82-87 ◽  
Author(s):  
S. P. Krizshanovsky ◽  
T. A. Kuznetsova ◽  
B. I. Geltser ◽  
T. S. Zaporozhets ◽  
S. P. Ermakova ◽  
...  

Objective. The purpose of the research is the experimental study of the possibility of correction of disorders of lipid metabolism, lipid peroxidation and antioxidant protection (POL-AOP), liver structure on the model of alimentary hyperlipidemia in mice. Materials and methods. Fucoidan, a sulfated polysaccharide with a molecular weight of 160 kDa, derived from brown algae Fucus evanescens. The alimentary hyperlipidemia model was reproduced in mice. The biochemical parameters of lipid metabolism, state of POL-AOP system and the liver structure by MRT were studied. Results. We revealed the ability of fucoidan at per os administration to animals to normalize the key parameters of lipid metabolism, indicators of POL-AOP system, liver anatomic-topographic structure. Conclusion. The ability of fucoidan to correct these parameters allows us to consider it as a basis for the development of new biological medicines for the treatment of atherosclerotic disorders.


2021 ◽  
Author(s):  
Jenna J. Guthmiller ◽  
Henry A. Utset ◽  
Carole Henry ◽  
Lei Li ◽  
Nai-Ying Zheng ◽  
...  

Influenza viruses grown in eggs for the purposes of vaccine generation often acquire mutations during egg adaptation or possess differential glycosylation patterns than viruses circulating amongst humans. Here, we report that seasonal influenza virus vaccines possess an egg-derived sulfated N-acetyllactosamine (LacNAc) that is an antigenic decoy. Half of subjects that received an egg-grown vaccine mounted an antibody response against this egg-derived antigen. Egg-binding monoclonal antibodies specifically bind viruses grown in eggs, but not viruses grown in other chicken derived cells, suggesting only egg-grown vaccines can induce anti-LacNAc antibodies. Notably, antibodies against the sulfated LacNAc utilized a restricted antibody repertoire and possessed features of natural antibodies, as most antibodies were IgM and have simple heavy chain complementarity determining region 3. By analyzing a public dataset of influenza virus vaccine induced plasmablasts, we discovered egg-binding public clonotypes that were shared across studies. Together, this study shows that egg-grown vaccines can induce antibodies against an egg-associated glycan, which may divert the host immune response away from protective epitopes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
James D. Allen ◽  
Ted M. Ross

AbstractWhile vaccines remain the best tool for preventing influenza virus infections, they have demonstrated low to moderate effectiveness in recent years. Seasonal influenza vaccines typically consist of wild-type influenza A and B viruses that are limited in their ability to elicit protective immune responses against co-circulating influenza virus variant strains. Improved influenza virus vaccines need to elicit protective immune responses against multiple influenza virus drift variants within each season. Broadly reactive vaccine candidates potentially provide a solution to this problem, but their efficacy may begin to wane as influenza viruses naturally mutate through processes that mediates drift. Thus, it is necessary to develop a method that commercial vaccine manufacturers can use to update broadly reactive vaccine antigens to better protect against future and currently circulating viral variants. Building upon the COBRA technology, nine next-generation H3N2 influenza hemagglutinin (HA) vaccines were designed using a next generation algorithm and design methodology. These next-generation broadly reactive COBRA H3 HA vaccines were superior to wild-type HA vaccines at eliciting antibodies with high HAI activity against a panel of historical and co-circulating H3N2 influenza viruses isolated over the last 15 years, as well as the ability to neutralize future emerging H3N2 isolates.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1457
Author(s):  
Dewald Schoeman ◽  
Burtram C. Fielding

Over the past 18 years, three highly pathogenic human (h) coronaviruses (CoVs) have caused severe outbreaks, the most recent causative agent, SARS-CoV-2, being the first to cause a pandemic. Although much progress has been made since the COVID-19 pandemic started, much about SARS-CoV-2 and its disease, COVID-19, is still poorly understood. The highly pathogenic hCoVs differ in some respects, but also share some similarities in clinical presentation, the risk factors associated with severe disease, and the characteristic immunopathology associated with the progression to severe disease. This review aims to highlight these overlapping aspects of the highly pathogenic hCoVs—SARS-CoV, MERS-CoV, and SARS-CoV-2—briefly discussing the importance of an appropriately regulated immune response; how the immune response to these highly pathogenic hCoVs might be dysregulated through interferon (IFN) inhibition, antibody-dependent enhancement (ADE), and long non-coding RNA (lncRNA); and how these could link to the ensuing cytokine storm. The treatment approaches to highly pathogenic hCoV infections are discussed and it is suggested that a greater focus be placed on T-cell vaccines that elicit a cell-mediated immune response, using rapamycin as a potential agent to improve vaccine responses in the elderly and obese, and the potential of stapled peptides as antiviral agents.


Sign in / Sign up

Export Citation Format

Share Document