Spatial Association Between Platinum Minerals and Magmatic Sulfides Imaged with the Maia Mapper and Implications for the Origin of the Chromite-Sulfide-PGE Association

Author(s):  
Stephen J. Barnes ◽  
Chris Ryan ◽  
Gareth Moorhead ◽  
Rais Latypov ◽  
Wolfgang D. Maier ◽  
...  

ABSTRACT The spatial association between Pt minerals, magmatic sulfides, and chromite has been investigated using microbeam X-ray fluorescence (XRF) element mapping and the Maia Mapper. This lab-based instrument combines the Maia parallel energy dispersive (ESD) detector array technology with a focused X-ray beam generated from a liquid metal source. It proves to be a powerful technique for imaging Pt distribution at low-ppm levels on minimally prepared cut rock surfaces over areas of tens to hundreds of square centimeters, an ideal scale for investigating these relationships. Images of a selection of samples from the Bushveld Complex and from the Norilsk-Talnakh ore deposits (Siberia) show strikingly close association of Pt hotspots, equated with the presence of Pt-rich mineral grains, with magmatic sulfide blebs in all cases, except for a taxitic low-S ore sample from Norilsk. In all of the Bushveld samples, at least 75% of Pt hotspots (by number) occur at or within a few hundred microns of the outer edges of sulfide blebs. In samples from the leader seams of the UG2 chromitite, sulfides and platinum hotspots are also very closely associated with the chromite seams and are almost completely absent from the intervening pyroxenite. In the Merensky Reef, the area ratio of Pt hotspots to sulfides is markedly higher in the chromite stringers than in the silicate-dominated lithologies over a few centimeters either side. We take these observations as confirmation that sulfide liquid is indeed the prime collector for Pt and, by inference, for the other platinum group elements (PGEs) in all these settings. We further propose a mechanism for the sulfide-PGE-chromite association in terms of in situ heterogeneous nucleation of all these phases coupled with transient sulfide saturation during chromite growth and subsequent sulfide loss by partial re-dissolution. In the case of the amygdular Norilsk taxite, the textural relationship and high PGE/S ratio is explained by extensive loss of S to an escaping aqueous vapor phase.

1981 ◽  
Vol 25 ◽  
pp. 113-115
Author(s):  
A. J. Durbetaki ◽  
R. H. Carlson ◽  
T. F. Quail

Hydrogen peroxide is used to extract uranium by the in situ leaching of sandstone ore deposits containing uraninite (UO2). Since FeS2 minerals, marcasite and pyrite, also occur in these deposits and they consume hydrogen peroxide in their oxidation, it is important to determine their concentration.A quantitative X-ray diffraction (XRD) method was therefore developed in order to monitor the concentration of marcasite and pyrite in sandstone ores.


2020 ◽  
Vol 115 (6) ◽  
pp. 1305-1320
Author(s):  
Louise Schoneveld ◽  
Stephen J. Barnes ◽  
Belinda Godel ◽  
Margaux Le Vaillant ◽  
Marina A. Yudovskaya ◽  
...  

Abstract Oxide-rimmed, spherical structures interpreted as former gas bubbles have been discovered within a chromitiferous taxitic lithology of the Norilsk-Talnakh intrusions. These rocks are represented by variable grain size, presence of reworked country-rock xenoliths and millimeter- to centimeter-scale irregular spinel-rich aggregates, patches, or disrupted seams and stringers. They contain spherical and subspherical agglomerations that we interpret as amygdules, partially or completely filled with low-temperature hydrothermal minerals and locally with magmatic phases including sulfide globules. In places these amygdules form clusters that are interpreted as former bubble foams. The wetting relationships visible between vapor bubbles, silicate melt, sulfide liquid, and oxide were investigated in detail using 3-D μX-ray tomography and detailed 2-D X-ray fluorescence maps. They also reveal short-range spatial variability in silicate and oxide minerals, reflecting small-scale advanced fractionation of silicate melt. Three possible mechanisms are considered for the formation of these bubble-spinel foams: (1) the abundant spinel allows for the in situ nucleation of vapor bubbles, (2) the vapor bubbles ascend through the magma and collect spinel, or (3) the vapor bubbles cause rapid nucleation of chromite within these layers. Although none of these mechanisms can be exclusively ruled out, the texture and chemistry of the Norilsk-Talnakh chromitiferous taxitic lithology is most indicative of in situ nucleation of vapor bubbles on spinel surfaces (i.e., mechanism 1).


1980 ◽  
Vol 24 ◽  
pp. 197-201 ◽  
Author(s):  
G. Borgonovi ◽  
D. Epperson ◽  
G. Houghton ◽  
V. Orphan

The mining industry uses coring as a standard method for the evaluation of ore deposits. Since coring is costly and time-consuming, increasing attention has been given to logging techniques capable of providing information about the orebody, thus allowing replacement of at least part of a coring program. An evaluation of the feasibility and potential for application of a variety of borehole logging techniques(l) concluded that X-ray diffraction (XRD) is one of the promising techniques for borehole assay, along with neutron activation analysis, X-ray fluorescence, photoluminescence, and infrared spectroscopy.


2020 ◽  
Vol 115 (8) ◽  
pp. 1827-1833
Author(s):  
James E. Mungall ◽  
M. Christopher Jenkins ◽  
Samuel J. Robb ◽  
Zhuosen Yao ◽  
James M. Brenan

Abstract There has been vigorous debate for several decades about whether the extreme enrichments of platinum group elements (PGEs) in some magmatic sulfide deposits could have resulted from simple equilibration of sulfide liquid with silicate melt. Key examples include the Ni-Cu-Pd mineralization in the Norilsk mining camp, the UG2 and Merensky reef Pt-Pd deposits in the Bushveld Complex, the Pd-rich J-M reef of the Stillwater Complex, and the Skaergaard Pd-Au mineralization. It was argued historically that the observed PGE tenors in these latter deposits are too high to be consistent with simple equilibration of sulfide and silicate melt. A commonly cited mechanism for increasing PGE tenor in magmatic sulfide is the upgrading of initially low tenor sulfide by allowing a small volume of sulfide to react with successive batches of fresh, previously undepleted silicate magma. Here we review several previous models for sulfide upgrading in light of recent changes in accepted values of the partition coefficients governing PGE exchange between sulfide and silicate, and we critically examine the physical scenarios implicit in each previous model. We show that, although sulfide upgrading may occur in natural settings such as fractional melting of the mantle, during the formation of sulfide accumulations from magmas it is unlikely to have effects that can be distinguished from simple one-stage batch equilibration. Even the most PGE-rich deposits currently known have compositions that can easily be accounted for by the simple one-stage batch process, with the possible exception of the Skaergaard Pd mineralization. It is generally not possible to use the measured composition of accumulations of magmatic sulfide to infer that sulfide upgrading has or has not occurred.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


1997 ◽  
Vol 7 (C2) ◽  
pp. C2-619-C2-620 ◽  
Author(s):  
M. Giorgett ◽  
I. Ascone ◽  
M. Berrettoni ◽  
S. Zamponi ◽  
R. Marassi

2019 ◽  
Author(s):  
Christian Prehal ◽  
Aleksej Samojlov ◽  
Manfred Nachtnebel ◽  
Manfred Kriechbaum ◽  
Heinz Amenitsch ◽  
...  

<b>Here we use in situ small and wide angle X-ray scattering to elucidate unexpected mechanistic insights of the O2 reduction mechanism in Li-O2 batteries.<br></b>


2020 ◽  
Author(s):  
Keishiro Yamashita ◽  
Kazuki Komatsu ◽  
Hiroyuki Kagi

An crystal-growth technique for single crystal x-ray structure analysis of high-pressure forms of hydrogen-bonded crystals is proposed. We used alcohol mixture (methanol: ethanol = 4:1 in volumetric ratio), which is a widely used pressure transmitting medium, inhibiting the nucleation and growth of unwanted crystals. In this paper, two kinds of single crystals which have not been obtained using a conventional experimental technique were obtained using this technique: ice VI at 1.99 GPa and MgCl<sub>2</sub>·7H<sub>2</sub>O at 2.50 GPa at room temperature. Here we first report the crystal structure of MgCl2·7H2O. This technique simultaneously meets the requirement of hydrostaticity for high-pressure experiments and has feasibility for further in-situ measurements.


2020 ◽  
Author(s):  
Luzia S. Germann ◽  
Sebastian T. Emmerling ◽  
Manuel Wilke ◽  
Robert E. Dinnebier ◽  
Mariarosa Moneghini ◽  
...  

Time-resolved mechanochemical cocrystallisation studies have so-far focused solely on neat and liquid-assisted grinding. Here, we report the monitoring of polymer-assisted grinding reactions using <i>in situ</i> X-ray powder diffraction, revealing that reaction rate is almost double compared to neat grinding and independent of the molecular weight and amount of used polymer additives.<br>


Sign in / Sign up

Export Citation Format

Share Document