scholarly journals Association of Adipoq +45 T>G Gene Polymorphism with Insulin Resistance and Icam-1 Value in Obese Adolescents

2011 ◽  
Vol 81 (6) ◽  
pp. 398-406 ◽  
Author(s):  
Akcam ◽  
Boyaci ◽  
Pirgon ◽  
Kaya ◽  
Uysal ◽  
...  

Objective: The aim of the study was to determine whether metformin or vitamin E treatment for six months is effective in reducing body weight, blood pressure, and also ameliorating insulin resistance, adiponectin, and tumor necrosis factor (TNF)-alpha in obese adolescents with non-alcoholic fatty liver disease (NAFLD). Methods: Sixty-seven obese adolescents with liver steatosis (age range, 9 - 17 years) were included in the study. The metformin group received an 850-mg dose of metformin daily and the vitamin E group received 400 U vitamin E /daily, in capsule form for 6 months, plus an individually tailored diet, exercise, and behavioral therapy. Results: After 6 months later, there was a significant decline in body mass index, and fasting insulin and homeostatic model assessment (HOMA) values in all three groups. Moreover, in comparingson of changes in HOMA among the groups, the metformin- treated group showed significantly improved metabolic control and insulin sensitivity (HOMA) at the end of the study. There were no significant differences for changes of adiponectin, TNF-alpha, in all three groups after 6 months study. Conclusion: These data suggest that metformin treatment is more effective than dietary advice and vitamin E treatment in reducing insulin resistance, and also in ameliorating metabolic parameters such as fasting insulin and lipid levels, in obese adolescents having NAFLD.


Metabolomics ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Elisabeth Müllner ◽  
Hanna E. Röhnisch ◽  
Claudia von Brömssen ◽  
Ali A. Moazzami

Abstract Introduction Hyperinsulinaemia and insulin resistance (IR) are strongly associated with obesity and are forerunners of type 2 diabetes. Little is known about metabolic alterations separately associated with obesity, hyperinsulinaemia/IR and impaired glucose tolerance (IGT) in adolescents. Objectives To identify metabolic alterations associated with obesity, hyperinsulinaemia/IR and hyperinsulinaemia/IR combined with IGT in obese adolescents. Methods 81 adolescents were stratified into four groups based on body mass index (lean vs. obese), insulin responses (normal insulin (NI) vs. high insulin (HI)) and glucose responses (normal glucose tolerance (NGT) vs. IGT) after an oral glucose tolerance test (OGTT). The groups comprised: (1) healthy lean with NI and NGT, (2) obese with NI and NGT, (3) obese with HI and NGT, and (4) obese with HI and IGT. Targeted nuclear magnetic resonance-based metabolomics analysis was performed on fasting and seven post-OGTT plasma samples, followed by univariate and multivariate statistical analyses. Results Two groups of metabolites were identified: (1) Metabolites associated with insulin response level: adolescents with HI (groups 3–4) had higher concentrations of branched-chain amino acids and tyrosine, and lower concentrations of serine, glycine, myo-inositol and dimethylsulfone, than adolescents with NI (groups 1–2). (2) Metabolites associated with obesity status: obese adolescents (groups 2–4) had higher concentrations of acetylcarnitine, alanine, pyruvate and glutamate, and lower concentrations of acetate, than lean adolescents (group 1). Conclusions Obesity is associated with shifts in fat and energy metabolism. Hyperinsulinaemia/IR in obese adolescents is also associated with increased branched-chain and aromatic amino acids.


2013 ◽  
Vol 8 (6) ◽  
pp. e251-e255 ◽  
Author(s):  
Matteo Baldisserotto ◽  
Durval Damiani ◽  
Louise Cominato ◽  
Ruth Franco ◽  
Arthur Lazaretti ◽  
...  

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Usha Adiga ◽  
Nandit Banawalikar ◽  
Sriprajna Mayur ◽  
Radhika Bansal ◽  
Nafeesath Ameera ◽  
...  

2016 ◽  
Vol 53 (5) ◽  
pp. 268
Author(s):  
Raynald Takumansang ◽  
Sarah M. Warouw ◽  
Hesti Lestari

Background Obesity has become a rapidly growing epidemic worldwide, increasing the risk of morbidity and mortality in adolescents. Obesity is due to an expansion of adipose tissue mass, which is an important source of cytokines and contributes to an increase in pro-inflammatory cytokines, such as interleukin-6 (IL-6). Interleukin-6 is significantly increased in obesity and may lead to a state of insulin resistance.Objective To assess for a correlation between IL-6 levels and insulin resistance in obese adolescentsMethods We conducted a cross-sectional study from January to April 2012 in Manado, North Sulawesi. Subjects were either obese or normal body mass index (BMI) teens aged 13-18 years. Data collected were anthropometric status, BMI, and blood specimens for fasting plasma glucose levels, fasting insulin levels, and IL-6 levels. Insulin resistance was expressed as homeostatic model assessment of insulin resistance (HOMA-IR) level >2.77. Data was analyzed by Pearson’s correlation and linear regression tests to assess for a possible correlation between IL-6 levels and insulin resistance.Results The mean BMI in the obese group was 31.21 (SD 3.61) kg/m2 while the mean BMI in the normal group was 19.52 (SD 2.38) kg/m2. There was no significant association between IL-6 and the occurrence of insulin resistance (P=0.309). The log regression coefficient value of IL-6 was negative (b = -0.329).Conclusion There is no correlation between IL-6 levels and incidence of insulin resistance in obese adolescents.


2011 ◽  
Vol 6 (2-2) ◽  
pp. e312-e317 ◽  
Author(s):  
Marie-Laure Frelut ◽  
Jean-Pierre Nicolas ◽  
Jean-Claude Guilland ◽  
Genevieve Potier de Courcy

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Renata G. Duft ◽  
Alex Castro ◽  
Ivan L. P. Bonfante ◽  
Wendell A. Lopes ◽  
Larissa R. da Silva ◽  
...  

Abstract Exercise training and a healthy diet are the main non-pharmacological strategies for treating chronic conditions, such as obesity and insulin resistance (IR), in adolescents. However, the isolated metabolic changes caused by exercise training without dietary intervention have not yet been established. We investigated how combined training (CT) without dietary intervention altered the concentrations of serum metabolites, biochemical, anthropometric and functional parameters in overweight and obese adolescents. Thirty-seven adolescents (14.6 ± 1.05 years), of both sexes, were randomly assigned to the control group (CG, n = 19) or the training group (TG, n = 18). The CT was composed by resistance training and aerobic training performed in the same session (~ 60 min), three times a week, for 12 weeks. All assessments were performed pre and post-intervention. Metabolomics analyses were conducted using nuclear magnetic resonance spectroscopy (1H NMR) in a 600 MHz spectrometer. There was a decrease in body weight (BW), body mass index (BMI), waist circumference (WC), % body fat (%BF), fasting glucose, insulin levels, and insulin resistance (IR), by HOMA-IR, in the TG. An increase in fat-free mass (FFM) was also observed in the CG. The metabolic changes were given mainly by changes in the levels of metabolites 2-oxoisocaproate (↓TG), 3-hydroxyisobutyrate (↑CG and ↓TG), glucose (↓TG), glutamine (↓CG and ↑TG) and pyruvate (↓TG). These findings demonstrate the positive effects of CT program without dietary intervention on metabolomic profile, body composition, biochemical markers, and glucose metabolism in overweight and obese adolescents.


Sign in / Sign up

Export Citation Format

Share Document