scholarly journals Microbial Enhanced Oil Recovery (MEOR): Alternatif Peningkatan Produksi Migas di Indonesia

2020 ◽  
Vol 2 (2) ◽  
pp. 01-08
Author(s):  
Desy Hikmatul Siami ◽  
◽  
Novi Hery Yono ◽  

The need for petroleum is increasing along with the development of the industry, while the production results from the process of recovering oil from the reservoir by using primary recovery and secondary recovery are still very low so that it takes an advanced stage, namely tertiary recovery or, known as EOR. EOR is a method that produces oil production above 50%. EOR is an effort to increase oil production, so it is included in the IOR (Improved Oil Recovery) section. EOR consists of various applications, ranging from water injection, chemical injection, gases injection to microbiology injection. The stages in the injection of water and gas still leave oil trapped in the rocks in the reservoir. MEOR is one method that can be used to bring oil trapped in reservoir rocks to the surface. The effectiveness of the MEOR method is measured based on several parameters that is formation temperature, oil viscosity, permeability, saltwater salinity, water cut, API gravity crude oil, pH, pressure, residual oil saturation, porosity depth and bacterial content in the reservoir.

2013 ◽  
Vol 16 (01) ◽  
pp. 60-71 ◽  
Author(s):  
Sixu Zheng ◽  
Daoyong Yang

Summary Techniques have been developed to experimentally and numerically evaluate performance of water-alternating-CO2 processes in thin heavy-oil reservoirs for pressure maintenance and improving oil recovery. Experimentally, a 3D physical model consisting of three horizontal wells and five vertical wells is used to evaluate the performance of water-alternating-CO2 processes. Two well configurations have been designed to examine their effects on heavy-oil recovery. The corresponding initial oil saturation, oil-production rate, water cut, oil recovery, and residual-oil-saturation (ROS) distribution are examined under various operating conditions. Subsequently, numerical simulation is performed to match the experimental measurements and optimize the operating parameters (e.g., slug size and water/CO2 ratio). The incremental oil recoveries of 12.4 and 8.9% through three water-alternating-CO2 cycles are experimentally achieved for the aforementioned two well configurations, respectively. The excellent agreement between the measured and simulated cumulative oil production indicates that the displacement mechanisms governing water-alternating-CO2 processes have been numerically simulated and matched. It has been shown that water-alternating-CO2 processes implemented with horizontal wells can be optimized to significantly improve performance of pressure maintenance and oil recovery in thin heavy-oil reservoirs. Although well configuration imposes a dominant impact on oil recovery, the water-alternating-gas (WAG) ratios of 0.75 and 1.00 are found to be the optimum values for Scenarios 1 and 2, respectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Emad Waleed Al-Shalabi ◽  
Kamy Sepehrnoori ◽  
Gary Pope

Low salinity water injection (LSWI) is gaining popularity as an improved oil recovery technique in both secondary and tertiary injection modes. The objective of this paper is to investigate the main mechanisms behind the LSWI effect on oil recovery from carbonates through history-matching of a recently published coreflood. This paper includes a description of the seawater cycle match and two proposed methods to history-match the LSWI cycles using the UTCHEM simulator. The sensitivity of residual oil saturation, capillary pressure curve, and relative permeability parameters (endpoints and Corey’s exponents) on LSWI is evaluated in this work. Results showed that wettability alteration is still believed to be the main contributor to the LSWI effect on oil recovery in carbonates through successfully history matching both oil recovery and pressure drop data. Moreover, tuning residual oil saturation and relative permeability parameters including endpoints and exponents is essential for a good data match. Also, the incremental oil recovery obtained by LSWI is mainly controlled by oil relative permeability parameters rather than water relative permeability parameters. The findings of this paper help to gain more insight into this uncertain IOR technique and propose a mechanistic model for oil recovery predictions.


Author(s):  
Liguo Zhong ◽  
Cheng Wang ◽  
Yigang Liu ◽  
Wei Zhang ◽  
Xiaodong Han ◽  
...  

AbstractA modular multiple thermal fluid generator is introduced to enhance heavy oil production, which consists of water treatment system, fuel injection system, air compressor, central burning and heat exchanging system, and measuring and controlling system. All the components are mounted in three separated light shelters, which are easy to be lifted and installed, especially on the offshore production platform. It could be operated under 350 ℃ and 20 MPa, and the temperature and GWR (ratio of the volume of gas to the equivalent water volume of steam under standard conditions) could be adjusted by the water injection rate under the given heating capability of the central burning chamber. The temperature of the generated fluid is usually 200–300 ℃ with GWR of 200–300 m3/m3. Compared to conventional steam generator, such compact multiple thermal fluid generator is easy to be installed on the offshore oil production platform, and the generated multiple thermal fluid is potential to enhance heavy oil production in mechanisms of reducing heavy oil viscosity by both heating and injected gas, enlarging the heating reservoir chamber, and pressure by injected gas. In the past 10 years, the multiple thermal fluid generator has been applied to more than 40 wells in Bohai Offshore Oilfield and Xinjiang Oilfield in cyclic multiple thermal fluid stimulation (CMTFS in short) process. As a result, the multiple thermal fluid generators were operated soundly, and the heavy oil production of these wells was enhanced remarkably. (The oil production rate was 2–3 times more than cold production.)


2021 ◽  
Author(s):  
Alexey Viktorovich Kornilov ◽  
Ivan Vasilievich Tkachev ◽  
Artem Vacheevich Fomkin ◽  
Andrey Mikhailovich Petrakov ◽  
Denis Radikovich Batrshin ◽  
...  

Abstract The paper describes the process of evaluation of low salinity water composition to improve the development of hydrophobic carbonate formations of Central-Khoreiver Uplift (CKU) fields with relatively high oil viscosity (5-15 mPa·s) and average formation temperature 70°C. The sources of low salinity water were determined, prospective composition for water injection were analyzed. The efficiency of oil displacement by formation water and low salinity water are observed during the spontaneous imbibition experiments and coreflood tests to compare the efficiency of formation and low salinity water. The expected incremental displacement efficiency for the target carbonate formations can vary widely, from 1 to 10%. Linear models of the completed coreflood tests and a sector hydrodynamic model of the prospective trial injection are built, considering the basic chemical processes while mixing different types of water. We also review the prospects of joint application of low salinity water injection and chemical EOR methods.


2021 ◽  
Author(s):  
Julfree Sianturi ◽  
Bayu Setyo Handoko ◽  
Aditya Suardiputra ◽  
Radya Senoputra

Abstract Handil Field is a giant mature oil and gas field situated in Mahakam Delta, East Kalimantan Indonesia. Peripheral Low Salinity Water injection was performed since 1978 with an extraordinary result. The paper is intending to describe the success story of this secondary recovery by low salinity water injection application in the peripheral of Handil field main zone, which successfully increased the oil recovery and brought down the remaining oil saturation beyond the theoretical value of residual oil saturation number. Water producer wells were drilled to produce low salinity water from shallow reservoirs 400 - 1000 m depth then it was injected to main zone reservoirs where the main accumulation of oil situated. This low salinity water reacted positively with the rock properties and in-situ fluids which was described as wettability alteration in the reservoir. It is related to initial reservoir condition, connate water saturation, rock physics and connate water salinity. This peripheral scheme then observed having the sweeping effect on top of pressure maintenance due to long period of injection. The field production performance was indicating the important reduction of residual oil saturation in some reservoirs with continuous low salinity water injection. From static Oil in Place calculation, some reservoirs have high current oil recovery up to 80%. This was proved by in situ residual oil saturation measurement which was performed in 2007 and 2011. It was indicating the low residual saturation as low as 8% - 15%. This excellent result was embraced by a progressive development plan, where water flooding with pattern and chemical injection will be performed later on. The continuation of this peripheral injection is in an on-going development with patterns injection which is called water flooding development. An important oil recovery can be achieved with a simple scheme of low salinity injection, performed in a close network injection, where the water treatment is simple yet significant oil gain was recovered. This innovation technique brings more revenue with less investment compared to chemical EOR injection.


Author(s):  
Imran Akbar ◽  
Zhou Hongtao

Enhanced Oil Recovery (EOR), is a technique that has been used to recover the remaining oil from the reservoirs after primary and secondary recovery methods. Some reservoirs are very complex and require advanced EOR techniques that containing new materials and additives in order to produce maximum oil in economic and environmentally friendly manners. Because of EOR techniques, in this work previous and current challenges have been discussed, and suggested some future opportunities. This work comprises the key factors, such as; transport of Preformed Particle Gels (PPGs), Surface wettability and conformance control that affect the efficiency of PPGs. The conduits, fractures, fracture-like features and high permeability streaks are the big challenges for EOR, as they may cause early water breakthrough and undesirable water channeling. Hence, the use of PPGs is one of the exclusive commercial gel inventions, which not only increases the oil production but also decreases the water cut during the oil production. Moreover, different studies regarding PPG, surfactants, and Silica nanoparticle applications, such as the effect of salinity, particle size, swelling ratio, gel strength, wettability, and adsorption were also discussed. Future work is required in order to overcome the conformance problems and increase the oil recovery.


2011 ◽  
Vol 14 (02) ◽  
pp. 182-192 ◽  
Author(s):  
K.. Skrettingland ◽  
T.. Holt ◽  
M.T.. T. Tweheyo ◽  
I.. Skjevrak

Summary Low-salinity (lowsal) waterflooding has been evaluated for increased oil recovery (IOR) at the Snorre field. Coreflooding experiments and a single-well chemical tracer-test (SWCTT) field pilot have been performed to measure the remaining oil saturation after seawaterflooding and after lowsal flooding. The laboratory coreflooding experiments conducted at reservoir and low-pressure conditions involved core material from the Upper and Lower Statfjord and Lunde formations. The core material from the Statfjord formations gave incremental recovery in the order of 2% of original oil in place (OOIP) by injection of diluted seawater. Similar amounts were produced during following NaCl-based lowsal injections. The same trend was observed in the high- and low-pressure experiments. No significant response to lowsal flooding was observed for Lunde cores. No response was normally observed during alkaline injection. The SWCTT field pilot was carried out in the Upper Statfjord formation. The average oil saturations after seawater injection, after lowsal seawater injection, and after a new seawater injection were determined; no significant change in the remaining oil saturation was shown. The measured in-situ value of remaining oil saturation after seawaterflooding was in agreement with previous special core analysis (SCAL) experiments. The measured effect of tertiary lowsal flooding from core experiments was in agreement with the SWCTT. Both measurements indicated only low or no effect from lowsal injection. It has been suggested that lowsal flooding has a potential for improved oil recovery in all clayey sandstone formations containing crude oil. The results from this work indicate that the initial wetting condition is a crucial property for the effect of lowsal injection.


2021 ◽  
Vol 931 (1) ◽  
pp. 012002
Author(s):  
A Pituganova ◽  
I Minkhanov ◽  
A Bolotov ◽  
M Varfolomeev

Abstract Thermal enhanced oil recovery techniques, especially steam injection, are the most successful techniques for extra heavy crude oil reservoirs. Steam injection and its variations are based on the decrease in oil viscosity with increasing temperature. The main objective of this study is the development of advanced methods for the production of extra heavy crude oil in the oilfield of the Republic of Tatarstan. The filtration experiment was carried out on a bulk model of non-extracted core under reservoir conditions. The experiment involves the injection of slugs of fresh water, hot water and steam. At the stage of water injection, no oil production was observed while during steam injection recovery factor (RF) achieved 13.4 % indicating that fraction of immobile oil and non-vaporizing residual components is high and needed to be recovered by steam assisted EORs.


SPE Journal ◽  
2019 ◽  
Vol 24 (06) ◽  
pp. 2859-2873 ◽  
Author(s):  
Pedram Mahzari ◽  
Mehran Sohrabi ◽  
Juliana M. Façanha

Summary Efficiency of low–salinity–water injection primarily depends on oil/brine/rock interactions. Microdispersion formation (as the dominant interfacial interaction between oil and low–salinity water) is one of the mechanisms proposed for the reported additional oil recovery by low–salinity–water injection. Using similar rock and brines, here in this work, different crude–oil samples were selected to examine the relationship between crude–oil potency to form microdispersions and improved oil recovery (IOR) by low–salinity–water injection in sandstone cores. First, the potential of the crude–oil samples to form microdispersions was measured; next, coreflood tests were performed to evaluate the performance of low–salinity–water injection in tertiary mode. Sandstone core plugs taken from a whole reservoir core were used for the experiments. The tests started with spontaneous imbibition followed by forced imbibition of high–salinity brine. Low–salinity brine was then injected in tertiary mode. The oil–recovery profiles and compositions of the produced brine were measured to investigate the IOR benefits as well as the geochemical interactions. The results demonstrate that the ratio of the microdispersion quantity to bond water is the main factor controlling the effectiveness of low–salinity–water injection. In general, a monotonic trend was observed between incremental oil recovery and the microdispersion ratio of the different crude–oil samples. In addition, it can be inferred from the results that geochemical interactions (pH and ionic interactions) would be mainly controlled by the rock's initial wettability, and also that these processes could not affect the additional oil recovery by low-salinity-water injection. To further verify the observations of geochemical interactions, a novel experiment was designed and performed on a quartz substrate to investigate the ionic interactions on the film of water between an oil droplet and a flat quartz substrate, when the high–salinity brine was replaced with the low–salinity brine. The results of the flat–substrate test indicated that the water film beneath the oil could not interact with the surrounding brine, which is in line with the results of the core tests.


Sign in / Sign up

Export Citation Format

Share Document