Inline-fähige Prüftechnik von Lithium-Ionen-Batterien/Inline test systems for the electrode production of lithium-ion batteries

2021 ◽  
Vol 111 (05) ◽  
pp. 291-294
Author(s):  
Henning Heuer ◽  
Marcel Wild ◽  
Sebastian Reuber ◽  
Susanne Hillmann ◽  
Beatrice Bendjus ◽  
...  

Bei der Fertigung von Batteriezellen in millionenfacher Anzahl ist eine gleichbleibend hohe Qualität von großer Bedeutung und die Sicherstellung eine ebensolche Herausforderung. Daneben sind Aspekte wie Kostenreduktion und Ressourcenschonung entscheidend für die zukünftige Verbreitung von Lithium-Ionen-Batterien für die Elektromobilität aber auch für den vermehrten Anwendungsfall der stationären Energiespeicherung. Produktionsintegrierte Prüfsysteme gekoppelt mit KI-basierten Datenkonzepten sind ein zentrales Element für eine effektive Qualitätssicherung und damit eine erhöhte Gesamtwirtschaftlichkeit in einer digitalen Batterieproduktion.   In battery cell production, it is of great importance and an equally great challenge to produce millions of units of consistently high quality. In addition, aspects such as cost reduction and resource conservation are crucial for the future spread of lithium-ion batteries for electromobility but also for the increased use in stationary energy storage. Production-integrated testing systems coupled with AI-based data concepts are a central element for effective quality assurance and thus increased overall cost-effectiveness in digital battery production.

Author(s):  
Xia Hua ◽  
Alan Thomas

Lithium-ion batteries are being increasingly used as the main energy storage devices in modern mobile applications, including modern spacecrafts, satellites, and electric vehicles, in which consistent and severe vibrations exist. As the lithium-ion battery market share grows, so must our understanding of the effect of mechanical vibrations and shocks on the electrical performance and mechanical properties of such batteries. Only a few recent studies investigated the effect of vibrations on the degradation and fatigue of battery cell materials as well as the effect of vibrations on the battery pack structure. This review focused on the recent progress in determining the effect of dynamic loads and vibrations on lithium-ion batteries to advance the understanding of lithium-ion battery systems. Theoretical, computational, and experimental studies conducted in both academia and industry in the past few years are reviewed herein. Although the effect of dynamic loads and random vibrations on the mechanical behavior of battery pack structures has been investigated and the correlation between vibration and the battery cell electrical performance has been determined to support the development of more robust electrical systems, it is still necessary to clarify the mechanical degradation mechanisms that affect the electrical performance and safety of battery cells.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Jules-Adrien Capitaine ◽  
Qing Wang

This paper presents a novel design for a test platform to determine the state of health (SOH) of lithium-ion batteries (LIBs). The SOH is a key parameter of a battery energy storage system and its estimation remains a challenging issue. The batteries that have been tested are 18,650 Li-ion cells as they are the most commonly used batteries on the market. The test platform design is detailed from the building of the charging and discharging circuitry to the software. Data acquired from the testing circuitry are stored and displayed in LabVIEW to obtain the charging and discharging curves. The resulting graphs are compared to the outcome predicted by the battery datasheets, to verify that the platform delivers coherent values. The SOH of the battery is then calculated using a Coulomb counting method in LabVIEW. The batteries will be discharged through various types of resistive circuits, and the differences in the resulting curves will be discussed. A single battery cell will also be tested over 30 cycles and the decrease in the SOH will be clearly identified.


2018 ◽  
Vol 6 (9) ◽  
pp. 3857-3863 ◽  
Author(s):  
Jun Liu ◽  
Ai Xiang Wei ◽  
Minghua Chen ◽  
Xinhui Xia

High-quality Li4Ti5O12/N-doped carbon (LTO/N-C) nanotube arrays on a conductive substrate are fabricated via a new ALD-assisted method for lithium ion battery applications. The designed LTO/N-C nanotube arrays show very impressive high-rate capacity (153 mA h g−1 at 5C) and stable capacity: 98% retention after 6000 cycles at 40C.


Batteries ◽  
2019 ◽  
Vol 5 (3) ◽  
pp. 57 ◽  
Author(s):  
Seyed Madani ◽  
Erik Schaltz ◽  
Søren Knudsen Kær

The determination of coulombic efficiency of the lithium-ion batteries can contribute to comprehend better their degradation behavior. In this research, the coulombic efficiency and capacity loss of three lithium-ion batteries at different current rates (C) were investigated. Two new battery cells were discharged and charged at 0.4 C and 0.8 C for twenty times to monitor the variations in the aging and coulombic efficiency of the battery cell. In addition, prior cycling was applied to the third battery cell which consist of charging and discharging with 0.2 C, 0.4 C, 0.6 C, and 0.8 C current rates and each of them twenty times. The coulombic efficiency of the new battery cells was compared with the cycled one. The experiments demonstrated that approximately all the charge that was stored in the battery cell was extracted out of the battery cell, even at the bigger charging and discharging currents. The average capacity loss rates for discharge and charge during 0.8 C were approximately 0.44% and 0.45% per cycle, correspondingly.


Author(s):  
Jules-Adrien Capitaine ◽  
Qing Wang

This paper presents a novel design for a test platform to determine the State of Health (SOH) of lithium-ion batteries. The SOH is a key parameter of a battery energy storage system and its estimation remains a challenging issue. The batteries that have been tested are 18650 li-ion cells as they are the most commonly used batteries on the market. The test platform design is detailed from the building of the charging and discharging circuitry to the software. Data acquired from the testing circuitry is stored and displayed in LabView to obtain charging and discharging curves. The resulting graphs are compared to the outcome predicted by the battery datasheets, to verify the platform delivers coherent values. The SOH of the battery is then calculated using a Coulomb Counting method in LabView. The batteries will be discharged through various types of resistive circuits, and the differences in the resulting curves will be discussed. A single battery cell will also be tested over 30 cycles and the decrease in the SOH will be clearly pointed out.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4284
Author(s):  
Damoon Soudbakhsh ◽  
Mehdi Gilaki ◽  
William Lynch ◽  
Peilin Zhang ◽  
Taeyoung Choi ◽  
...  

Lithium-ion batteries have found various modern applications due to their high energy density, long cycle life, and low self-discharge. However, increased use of these batteries has been accompanied by an increase in safety concerns, such as spontaneous fires or explosions due to impact or indentation. Mechanical damage to a battery cell is often enough reason to discard it. However, if an Electric Vehicle is involved in a crash, there is no means to visually inspect all the cells inside a pack, sometimes consisting of thousands of cells. Furthermore, there is no documented report on how mechanical damage may change the electrical response of a cell, which in turn can be used to detect damaged cells by the battery management system (BMS). In this research, we investigated the effects of mechanical deformation on electrical responses of Lithium-ion cells to understand what parameters in electrical response can be used to detect damage where cells cannot be visually inspected. We used charge-discharge cycling data, capacity fade measurement, and Electrochemical Impedance Spectroscopy (EIS) in combination with advanced modeling techniques. Our results indicate that many cell parameters may remain unchanged under moderate indentation, which makes detection of a damaged cell a challenging task for the battery pack and BMS designers.


RSC Advances ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 2072-2076 ◽  
Author(s):  
Xuefeng Chu ◽  
Huan Wang ◽  
Yaodan Chi ◽  
Chao Wang ◽  
Lei Lei ◽  
...  

A novel hard-template-assisted method is developed to fabricate high quality Co2V2O7 hollow nanoprisms. When evaluated as anode materials for lithium ion batteries, they exhibited a remarkable enhanced performance compared with the solid ones.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Runwei Mo ◽  
Fan Li ◽  
Xinyi Tan ◽  
Pengcheng Xu ◽  
Ran Tao ◽  
...  

Batteries ◽  
2018 ◽  
Vol 4 (4) ◽  
pp. 59 ◽  
Author(s):  
Seyed Madani ◽  
Erik Schaltz ◽  
Søren Knudsen Kær

To understand better the thermal behaviour of lithium-ion batteries under different working conditions, various experiments were applied to a 13 Ah Altairnano lithium titanate oxide battery cell by means of isothermal battery calorimeter. Several parameters were measured such as the battery surface temperature, voltage, current, power, heat flux, maximum temperature and power area. In addition, the efficiency was calculated. Isothermal battery calorimeter was selected as the most appropriate method for heat loss measurements. Temperatures on the surface of the battery were measured by employing four contact thermocouples (type K). In order to determine the heat loss of the battery, constant current charge and discharge pulses at sixteen different C-rates were applied to the battery. It was seen that the charge and discharge C-rates has a considerable influence on the thermal behaviours of lithium-ion batteries. In this research paper, the C-rate was linked to the peak temperature, efficiency and heat loss and it was concluded that they are linear dependent on the C-rate. In addition, the outcomes of this investigation can be used for battery thermal modelling and design of thermal management systems.


Sign in / Sign up

Export Citation Format

Share Document