Digitalisierung von additiven Fertigungseinheiten/Digitalization of additive manufacturing units

2021 ◽  
Vol 111 (09) ◽  
pp. 633-637
Author(s):  
Maximilian Vogt ◽  
Julian Ulrich Weber ◽  
Vishnuu Jothi Prakash

Additive Fertigungstechnologien erlauben die bedarfsgerechte Produktion von individuellen Ersatzteilen. Durch Einsatz mobiler Fertigungseinheiten lässt sich mithilfe dieser Verfahren die Resilienz von isolierten Produktionsstätten erhöhen. Um auch außerfachliches Personal zur Bedienung an entlegenen Einsatzorten zu befähigen, stellen digitale Assistenzsysteme eine mögliche Lösung dar. In diesem Beitrag wird ein solches Assistenzsystem zur Begleitung der manuellen Tätigkeiten beim roboterbasierten DED-Prozess in einer mobilen Fertigungseinheit diskutiert.   Additive manufacturing technologies enable the demand-driven production of individual spare parts. By using mobile manufacturing units, these processes can be used to increase the resilience of isolated production sites. In order to enable non-specialized personnel to operate at remote locations, digital assistance systems are a feasible solution. This paper discusses such an assistance system to accompany manual operations of the robot-based DED process in a mobile manufacturing unit.

2021 ◽  
Vol 1 ◽  
pp. 231-240
Author(s):  
Laura Wirths ◽  
Matthias Bleckmann ◽  
Kristin Paetzold

AbstractAdditive Manufacturing technologies are based on a layer-by-layer build-up. This offers the possibility to design complex geometries or to integrate functionalities in the part. Nevertheless, limitations given by the manufacturing process apply to the geometric design freedom. These limitations are often unknown due to a lack of knowledge of the cause-effect relationships of the process. Currently, this leads to many iterations until the final part fulfils its functionality. Particularly for small batch sizes, producing the part at the first attempt is very important. In this study, a structured approach to reduce the design iterations is presented. Therefore, the cause-effect relationships are systematically established and analysed in detail. Based on this knowledge, design guidelines can be derived. These guidelines consider process limitations and help to reduce the iterations for the final part production. In order to illustrate the approach, the spare parts production via laser powder bed fusion is used as an example.


2019 ◽  
Vol 6 (4) ◽  
pp. 516-526 ◽  
Author(s):  
Alessandro Ceruti ◽  
Pier Marzocca ◽  
Alfredo Liverani ◽  
Cees Bil

Abstract The paper broadly addresses how Industry 4.0 program drivers will impact maintenance in aviation. Specifically, Industry 4.0 practices most suitable to aeronautical maintenance are selected, and a detailed exposure is provided. Advantages and open issues are widely discussed and case studies dealing with realistic scenarios are illustrated to support what has been proposed by authors. The attention has been oriented towards Augmented Reality and Additive Manufacturing technologies, which can support maintenance tasks and spare parts production, respectively. The intention is to demonstrate that Augmented Reality and Additive Manufacturing are viable tools in aviation maintenance, and while a strong effort is necessary to develop an appropriate regulatory framework, mandatory before the wide-spread introduction of these technologies in the aerospace systems maintenance process, there has been a great interest and pull from the industry sector. Highlights Industry 4.0 practices most suitable to aeronautical maintenance are selected. Advantages and open issues are widely discussed and case studies are illustrated. Augmented Reality can support maintenance tasks. Additive Manufacturing can be useful to produce spare parts. A strong effort is necessary to develop an appropriate aeronautical regulatory framework.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1429 ◽  
Author(s):  
Joaquim Minguella-Canela ◽  
Sergio Morales Planas ◽  
Joan Gomà Ayats ◽  
M. de los Santos López

Additive manufacturing (AM) technologies are appropriate manufacturing technologies to produce low rotation products of high added value. Products in the spare parts business usually have discontinuous demand levels of reduced numbers of parts. Indeed, spare parts inventories handle myriad of products that require big immobilized investments while having an intrinsic risk of no-use (for example due to obsolescence or spoilage). Based on these issues, the present work analyses the fundamental cost factors in a real case study of a company dedicated to the supply of spare parts for fluid conduction systems. Real inventory data is assessed to determine the product taxonomy and its associated costs. A representative product of the stock is analyzed in detail on original manufacturing costs, in AM costs and then redesigned with topological optimization to reduce the AM cost levels (via design for additive manufacturing). A general equation for cost assessment is formulated. Given the specific data collected from the company, the parameters in this general equation are calculated. Finally, the general equation and the product cost reduction achieved are used to explore the potential economic impact of the use of AM technologies in the cost levels of manufacturing and stocking of spare part products.


2021 ◽  
pp. 279-302
Author(s):  
Hendrik Stern ◽  
◽  
Rieke Leder ◽  
Michael Lütjen

The use of LNG propulsion in ships has significant environmental benefits but also creates challenges in handling the LNG. Due to the safety regulations, the maintenance of the LNG ship systems is essential and requires a high degree of reliability and accuracy. Here, digital assistance systems, e.g., based on Augment-ed Reality (AR) technology, can support the maintenance and service purposes of LNG ship systems by displaying additional information directly on the objects to be serviced. Thus, this paper deals with the development and evaluation of a digital assistance system using AR technology. The developed assistance system based on an Android smartphone enables users to access maintenance instruc-tions and manuals, simplifies spare parts' ordering, and supports the work pro-cess step by step through context-sensitive virtualizations. Its evaluation was conducted as a combined quantitative and qualitative user study. Overall, the assistance system offers promising potentials for reducing workload and improv-ing processes.


2020 ◽  
Vol 12 (8) ◽  
pp. 3071 ◽  
Author(s):  
José M. González-Varona ◽  
David Poza ◽  
Fernando Acebes ◽  
Félix Villafáñez ◽  
Javier Pajares ◽  
...  

Additive manufacturing of spare parts significantly impacts industrial, social, and environmental aspects. However, a literature review shows that: (i) academic papers on the adoption of additive manufacturing have focused mainly on large companies; (ii) the methods required by SMEs to adopt new technologies differ from those employed by large companies; and (iii) recent studies suggest that a suitable way to help small- and medium-sized enterprises (SMEs) to adopt new additive manufacturing technologies from the academic world is by presenting case studies in which SMEs are involved. Given the increasing number of global SMEs (i.e., SMEs that manufacture locally and sell globally), we claim that these companies need to be assisted in adopting spare-parts additive manufacturing for the sake of resource and environmental sustainability. To bridge this gap, the purpose of this article is to present a case study approach that shows how a digital supply chain for spare parts has the potential to bring about changes in business models with significant benefits for both global SMEs (more effective logistic management), customers (response time), and the environment (reduced energy, emissions, raw materials, and waste).


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 409
Author(s):  
Antonio Del Prete ◽  
Teresa Primo

This paper reports the study and development case of an innovative application of the Cloud Manufacturing paradigm. Based on the definition of an appropriate web-based application, the infrastructure is able to connect the possible client requests and the relative supply chain product/process development capabilities and then attempt to find the best available solutions. In particular, the main goal of the developed system, called AMSA (Additive Manufacturing Spare parts market Application), is the definition of a common platform to supply different kinds of services that have the following common reference points in the Additive Manufacturing Technologies (DFAM, Design For Additive Manufacturing): product development, prototypes, or small series production and reverse engineering activities to obtain Computer-Aided Design (CAD) models starting from a physical object. The definition of different kinds of services allows satisfying several client needs such as innovative product definition characterized by high performance in terms of stiffness/weight ratio, the possibility of manufacturing small series, such as in the motorsport field, and the possibility of defining CAD models for the obsolete parts for which the geometrical information is missed. The AMSA platform relies on the reconfigurable supply chain that is dynamic, and it depends on the client needs. For example, when the client requires the manufacture of a small series of a component, AMSA allows the technicians to choose the best solutions in terms of delivery time, price, and logistics. Therefore, the suppliers that contribute to the definition of the dynamic supply chain have an important role. For these reasons, the AMSA platform represents an important and innovative tool that is able to link the suppliers to the customers in the best manner in order to obtain services that are characterized by a high-performance level. Therefore, a provisional model has been implemented that allows filtering the technologies according to suitable performance indexes. A specific aspect for which AMSA can be considered unique is related with the given possibility to access Design for Additive Manufacturing Services through the Web in accordance with the possible additive manufacturing technologies.


2021 ◽  
Vol 33 (2) ◽  
Author(s):  
B. Reitz ◽  
C. Lotz ◽  
N. Gerdes ◽  
S. Linke ◽  
E. Olsen ◽  
...  

AbstractMankind is setting to colonize space, for which the manufacturing of habitats, tools, spare parts and other infrastructure is required. Commercial manufacturing processes are already well engineered under standard conditions on Earth, which means under Earth’s gravity and atmosphere. Based on the literature review, additive manufacturing under lunar and other space gravitational conditions have only been researched to a very limited extent. Especially, additive manufacturing offers many advantages, as it can produce complex structures while saving resources. The materials used do not have to be taken along on the mission, they can even be mined and processed on-site. The Einstein-Elevator offers a unique test environment for experiments under different gravitational conditions. Laser experiments on selectively melting regolith simulant are successfully conducted under lunar gravity and microgravity. The created samples are characterized in terms of their geometry, mass and porosity. These experiments are the first additive manufacturing tests under lunar gravity worldwide.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3888
Author(s):  
Johanna Maier ◽  
Christian Vogel ◽  
Tobias Lebelt ◽  
Vinzenz Geske ◽  
Thomas Behnisch ◽  
...  

Generative hybridization enables the efficient production of lightweight structures by combining classic manufacturing processes with additive manufacturing technologies. This type of functionalization process allows components with high geometric complexity and high mechanical properties to be produced efficiently in small series without the need for additional molds. In this study, hybrid specimens were generated by additively depositing PA6 (polyamide 6) via fused layer modeling (FLM) onto continuous woven fiber GF/PA6 (glass fiber/polyamide 6) flat preforms. Specifically, the effects of surface pre-treatment and process-induced surface interactions were investigated using optical microscopy for contact angle measurements as well as laser profilometry and thermal analytics. The bonding characteristic at the interface was evaluated via quasi-static tensile pull-off tests. Results indicate that both the bond strength and corresponding failure type vary with pre-treatment settings and process parameters during generative hybridization. It is shown that both the base substrate temperature and the FLM nozzle distance have a significant influence on the adhesive tensile strength. In particular, it can be seen that surface activation by plasma can significantly improve the specific adhesion in generative hybridization.


Sign in / Sign up

Export Citation Format

Share Document