scholarly journals Chemical vapor deposition of germanium-rich CrGex nanowires

2021 ◽  
Vol 12 ◽  
pp. 1365-1371
Author(s):  
Vladislav Dřínek ◽  
Stanislav Tiagulskyi ◽  
Roman Yatskiv ◽  
Jan Grym ◽  
Radek Fajgar ◽  
...  

Chemical vapor deposition was applied to synthetize nanostructured deposits containing several sorts of nanoobjects (i.e., nanoballs, irregular particles, and nanowires). Analytical techniques, that is, high-resolution transmission electron microscopy, scanning electron microscopy, electron dispersive X-ray analysis, selected area electron diffraction, and X-ray photoelectron spectroscopy, showed that unlike nanoballs and particles composed of crystalline germanium, the layer was made of chromium germanide CrGex. The nanowires possessed a complex structure, namely a thin crystalline germanium core and amorphous CrGex coating. The composition of the nanowire coating was [Cr]/[Ge] = 1:(6–7). The resistance of the nanowire–deposit system was estimated to be 2.7 kΩ·cm using an unique vacuum contacting system.

2004 ◽  
Vol 19 (3) ◽  
pp. 697-706 ◽  
Author(s):  
Anna W. Topol ◽  
Kathleen A. Dunn ◽  
Karl W. Barth ◽  
Guillermo M. Nuesca ◽  
Brian K. Taylor ◽  
...  

Results are presented from a systematic investigation to design and optimize a low-pressure chemical vapor deposition (CVD) process for manganese-doped zinc sulfide (ZnS:Mn) thin films for electroluminescent (EL) device applications. The CVD process used diethylzinc (DEZ), di-π-cyclopentadienyl manganese (CPMn), and hydrogen sulfide (H2S) as co-reactants and hydrogen (H2) as carrier gas. A design of experiments approach was used to derive functionality curves for the dependence of ZnS:Mn film properties on substrate temperature and flow rates (partial pressures) of DEZ, CPMn, H2S, and H2. Film physical, chemical, structural, and optical properties were examined using Rutherford backscattering spectrometry, dynamic secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, nuclear-reaction analysis, x-ray diffraction, transmission electron microscopy, atomic force microscopy, and scanning electron microscopy. EL measurements were carried out on ZnS:Mn-based dielectric–sulfur–dielectric stacks incorporated into alternating-current thin-film electroluminescent devices. An optimized process window was established for the formation of films with predominantly (0 0 2) orientation, grain size larger than 0.2 μm, and Mn dopant level approximately 0.5 at.%. A brightness of 407 cd/m2 (119 fL) and efficiency of 1.6 lm/W were obtained, as measured at 40 V above threshold voltage and 60 Hz frequency.


2002 ◽  
Vol 16 (06n07) ◽  
pp. 1091-1095 ◽  
Author(s):  
W. T. ZHENG ◽  
X. WANG ◽  
T. DING ◽  
X. T. LI ◽  
W. D. FEI ◽  
...  

The carbon nitride films were deposited on single crystalline Si(001) and polycrystalline diamond substrates using microwave plasma chemical vapor deposition (MPCVD) with CH4+N2 as well as CH4+NH3 mixtures as the reactive gas source, respectively. Different CH4/N2 and CH4/NH3 gas ratios were tested. The results showed that carbon nitride films with different nitrogen content could more readily be obtained using a mixture of CH4/N2 rather than CH4/NH3. The films grown by different CH4/N2 ratios showed different morphology, which was revealed by scanning electron microscopy (SEM). The crystalline carbon nitride films containing silicon were realized using a CH4:N2 = 1:100 ratio. X-ray photoelectron spectroscopy (XPS), Auger electron microscopy (AES), Raman spectroscopy, and X-ray diffraction were used to characterize the composition and chemical bonding of the deposited films.


2008 ◽  
Vol 23 (5) ◽  
pp. 1320-1326 ◽  
Author(s):  
Seongho Jeon ◽  
Kijung Yong

A simple thermal annealing was performed to prepare tungsten oxide nanorods directly from tungsten (W) film. The W film was deposited on Si(100) substrate by chemical vapor deposition (CVD) at 450 °C using W(CO)6. A high density of tungsten oxide nanorods was produced by heating of the W film at 600–700 °C. The morphology, structure, composition, and chemical binding states of the prepared nanorods were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) analysis. XRD and TEM results showed that the grown nanorods were single-crystalline W18O49. According to XPS analysis, the W18O49 nanorods contained ∼55.69% W6+, ∼32.28% W5+, and ∼12.03% W4+. The growth mechanism based on thermodynamics is discussed for the growth of tungsten oxide nanorods from W film.


1990 ◽  
Vol 209 ◽  
Author(s):  
Yoshihisa Fujisaki ◽  
Sumiko Sakai ◽  
Saburo Ataka ◽  
Kenji Shibata

ABSTRACTHigh quality GaAs/SiO2 MIS( Metal Insulator Semiconductor ) diodes were fabricated using (NH4)2S treatment and photo-assisted CVD( Chemical Vapor Deposition ). The density of states at the GaAs and SiO2 interface is the order of 1011 cm-2eV-1 throughout the forbidden energy range, which is smaller by the order of two than that of the MIS devices made by the conventional CVD process. The mechanism attributable to the interface improvement was investigated through XPS( X-ray Photoelectron Spectroscopy ) analyses.


2000 ◽  
Vol 611 ◽  
Author(s):  
Akira Izumi ◽  
Hidekazu Sato ◽  
Hideki Matsumura

ABSTRACTThis paper reports a procedure for low-temperature nitridation of silicon dioxide (SiO2) surfaces using species produced by catalytic decomposition of NH3 on heated tungsten in catalytic chemical vapor deposition (Cat-CVD) system. The surface of SiO2/Si(100) was nitrided at temperatures as low as 200°C. X-ray photoelectron spectroscopy measurements revealed that incorporated N atoms are bound to Si atoms and O atoms and located top-surface of SiO2.


1989 ◽  
Vol 168 ◽  
Author(s):  
Paul D. Stupik ◽  
Linda K. Cheatham ◽  
John J. Graham ◽  
Andrew R. Barron

AbstractChemical vapor deposition from (MeCp)2Nb(allyl) at atmospheric pressure yields niobium carbide films at temperatures as low as 300°C. X-ray photoelectron spectroscopy (XPS) studies indicate that the bulk films contain a carbide phase and a nearly stoichiometric ratio of niobium to carbon. The morphology of the films has been examined by scanning electron microscopy (SEM).


2006 ◽  
Vol 321-323 ◽  
pp. 1687-1690 ◽  
Author(s):  
Hee Joon Kim ◽  
Dong Young Jang ◽  
Prem Kumar Shishodia ◽  
Akira Yoshida

In the paper, zinc oxide (ZnO) thin films are deposited by plasma enhanced chemical vapor deposition (PECVD) at different substrate temperatures. The ZnO films are characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The analysis results indicate that highly crystalline films with high orientation can be obtained at a substrate temperature of 300 oC with 50 ml/min flow rate from Diethylzinc (DEZ). Furthermore, the investigation of optical property shows that ZnO films are transparent, and the peak transmittance in the visible region is as high as 85%.


Sign in / Sign up

Export Citation Format

Share Document