scholarly journals Excited state dynamics for visible-light sensitization of a photochromic benzil-subsituted phenoxyl-imidazolyl radical

2019 ◽  
Vol 15 ◽  
pp. 2369-2379
Author(s):  
Yoichi Kobayashi ◽  
Yukie Mamiya ◽  
Katsuya Mutoh ◽  
Hikaru Sotome ◽  
Masafumi Koga ◽  
...  

Visible-light sensitized photoswitches have been paid particular attention in the fields of life sciences and materials science because long-wavelength light reduces photodegradation, transmits deep inside of matters, and achieves the selective excitation in condensed systems. Among various photoswitch molecules, the phenoxyl-imidazolyl radical complex (PIC) is a recently developed thermally reversible photochromic molecule whose thermal back reaction can be tuned from tens of nanoseconds to tens of seconds by rational design of the molecular structure. While the wide range of tunability of the switching speed of PIC opened up various potential applications, no photosensitivity to visible light limits its applications. In this study, we synthesized a visible-light sensitized PIC derivative conjugated with a benzil unit. Femtosecond transient absorption spectroscopy revealed that the benzil unit acts as a singlet photosensitizer for PIC by the Dexter-type energy transfer. Visible-light sensitized photochromic reactions of PIC are important for expanding the versatility of potential applications to life sciences and materials science.

2019 ◽  
Author(s):  
Yoichi Kobayashi ◽  
Yukie Mamiya ◽  
Katsuya Mutoh ◽  
Hikaru Sotome ◽  
Masafumi Koga ◽  
...  

Visible light sensitized photoswitches have been paid particular attention in the fields of life science and materials science because long-wavelength light reduces photodegradation, transmits deep inside of matters, and achieves the selective excitation in condensed systems.Among various photoswitch molecules, phenoxyl-imidazolyl radical complex (PIC) is a recently developed thermally-reversible photochromic molecule whose thermal back reaction can be tuned from tens of nanoseconds to tens of seconds by rational designs of the molecular structure. While the wide range of tunability of the switching speed of PIC opened up various potential applications, no photosensitivity to visible light limits its applications. In this study, we synthesized a visible light sensitized PIC derivative conjugated with a benzil unit. Femtosecond transient absorption spectroscopy revealed that the benzil unit acts as a singlet photosensitizer for PIC by the Dexter-type energy transfer. Visible light sensitized photochromic reactions of PIC are important for expanding the versatility of potential applications to life science and material science.


2015 ◽  
Vol 51 (7) ◽  
pp. 1375-1378 ◽  
Author(s):  
Tetsuo Yamaguchi ◽  
Michiel F. Hilbers ◽  
Paul P. Reinders ◽  
Yoichi Kobayashi ◽  
Albert M. Brouwer ◽  
...  

We demonstrate that a biphenyl-bridged imidazole dimer exhibits fast photochromism with a thermal recovery time constant of ∼100 ns, which is the fastest thermal back reaction in all reported imidazole dimers.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 49
Author(s):  
Xiangyang Li ◽  
Zongpeng Song ◽  
Huancheng Zhao ◽  
Wenfei Zhang ◽  
Zhenhua Sun ◽  
...  

In recent years, using two-dimensional (2D) materials to realize broadband photodetection has become a promising area in optoelectronic devices. Here, we successfully synthesized SnSe nanosheets (NSs) by a facile tip ultra-sonication method in water-ethanol solvent which was eco-friendly. The carrier dynamics of SnSe NSs was systematically investigated via a femtosecond transient absorption spectroscopy in the visible wavelength regime and three decay components were clarified with delay time of τ1 = 0.77 ps, τ2 = 8.3 ps, and τ3 = 316.5 ps, respectively, indicating their potential applications in ultrafast optics and optoelectronics. As a proof-of-concept, the photodetectors, which integrated SnSe NSs with monolayer graphene, show high photoresponsivities and excellent response speeds for different incident lasers. The maximum photo-responsivities for 405, 532, and 785 nm were 1.75 × 104 A/W, 4.63 × 103 A/W, and 1.52 × 103 A/W, respectively. The photoresponse times were ~22.6 ms, 11.6 ms, and 9.7 ms. This behavior was due to the broadband light response of SnSe NSs and fast transportation of photocarriers between the monolayer graphene and SnSe NSs.


Author(s):  
Xiaoxia Wu ◽  
Shaofeng Zhang ◽  
Difa Ye

Abstract The buildup processes of the light-induced states (LISs) in attosecond transient absorption spectroscopy are studied by solving the time-dependent Schrödinger equation and compared with the quasistatic Floquet theory, revealing a time lag of the maximal shift and strongest absorbance of the LIS with respect to the zero delay that is referred to as the buildup time. We analytically derive a scaling law for the buildup time that confirms the numerical results over a wide range of detunings. Our theory verifies the commonly accepted scenario of nearly instantaneous response of matter to light if the pump field is blue-detuned, but some differences are found in the near-resonant and red-detuning cases. Implications of the buildup time in petahertz optoelectronics are discussed.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 977 ◽  
Author(s):  
Yiluo Hu ◽  
Daham Jeong ◽  
Yohan Kim ◽  
Seonmok Kim ◽  
Seunho Jung

Hydrogel materials with a gel-sol conversion due to external environmental changes have potential applications in a wide range of fields, including controlled drug delivery. Succinoglycans are anionic extracellular polysaccharides produced by various bacteria, including Sinorhizobium species, which have diverse applications. In this study, the rheological analysis confirmed that succinoglycan produced by Sinorhizobium meliloti Rm 1021 binds weakly to various metal ions, including Fe2+ cations, to maintain a sol form, and binds strongly to Fe3+ cations to maintain a gel form. The Fe3+-coordinated succinoglycan (Fe3+-SG) hydrogel was analyzed by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, circular dichroism (CD), and field-emission scanning electron microscopy (FE-SEM). Our results revealed that the Fe3+ cations that coordinated with succinoglycan were converted to Fe2+ by a reducing agent and visible light, promoting a gel-sol conversion. The Fe3+-SG hydrogel was then successfully used for controlled drug delivery based on gel-sol conversion in the presence of reducing agents and visible light. As succinoglycan is nontoxic, it is a potential material for controlled drug delivery.


2014 ◽  
Vol 16 (13) ◽  
pp. 5922-5926 ◽  
Author(s):  
Ernest Pastor ◽  
Federico M. Pesci ◽  
Anna Reynal ◽  
Albertus D. Handoko ◽  
Mingjia Guo ◽  
...  

Transient absorption spectroscopy as a tool to monitor charge carriers in Cu2O–RuOx photocathodes for CO2 reduction.


Author(s):  
Akin Aydogan ◽  
Rachel Bangle ◽  
Simon De Kreijger ◽  
John Dickenson ◽  
Michael L Singleton ◽  
...  

The mechanism of a visible light-driven dehalogenation/cyclization reaction was investigated using ruthenium(II), iridium(III) and iron(III) photosensitizers by means of steady-state photoluminescence, time-resolved infrared spectroscopy, and nanosecond/femtosecond transient absorption spectroscopy. The...


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 763 ◽  
Author(s):  
Bianca-Maria Bresolin ◽  
Carsten Günnemann ◽  
Detlef W. Bahnemann ◽  
Mika Sillanpää

In our work, we employed Cs3Bi2I9 as a visible-light-active photocatalyst, synthesized with a low-temperature solvothermal method. The morphological and structural properties of the as-prepared perovskite were investigated, and the results were compared to previous studies to confirm its nature and the quality of the synthesis procedure. Transient absorption spectroscopy was applied in order to investigate the generation and lifetime of photogenerated charge carriers, revealing their formation after visible light excitation. The potential photocatalytic activity of the as-prepared metal halide perovskite was applied for the removal of Rhodamine B in aqueous solution, demonstrating an excellent activity of 93% after 180 min under visible-light irradiation. The current research aims to provide insights into the design of a new visible-light-active photocatalyst, Cs3Bi2I9, selected for its high application value in the field of advanced materials for light harvesting.


2020 ◽  
Author(s):  
Yang Bai ◽  
Keita Nakagawa ◽  
Alexander Cowan ◽  
Catherine Aitchison ◽  
Yuichi Yamaguchi ◽  
...  

<p>Linear conjugated polymers have potential as photocatalysts for hydrogen production from water but so far, most studies have involved non-scalable sacrificial reagents. Z-schemes comprising more than one semiconductor are a potential solution, but it is challenging to design these systems because multiple components must work together synergistically. Here, we show that a conjugated polymer photocatalyst for proton reduction can be coupled in a Z-scheme with an inorganic water oxidation photocatalyst to promote overall water splitting without any sacrificial reagents. First, a promising combination of an organic catalyst, an inorganic catalyst, and a redox mediator was identified by using high-throughput screening of a library of components. A Z-scheme system composed of P10 (homopolymer of dibenzo[<i>b</i>,<i>d</i>]thiophene sulfone)-Fe<sup>2+</sup>/Fe<sup>3+</sup>-BiVO<sub>4</sub> was then constructed for overall water splitting under visible light irradiation. Transient absorption spectroscopy was used to assign timescales to the various steps in the photocatalytic process. While the overall solar-to-hydrogen efficiency of this first example is low, it provides proof of concept for other hybrid organic-inorganic Z-scheme architectures in the future.</p>


Sign in / Sign up

Export Citation Format

Share Document