scholarly journals Efficient continuous-flow synthesis of novel 1,2,3-triazole-substituted β-aminocyclohexanecarboxylic acid derivatives with gram-scale production

2013 ◽  
Vol 9 ◽  
pp. 1508-1516 ◽  
Author(s):  
Sándor B Ötvös ◽  
Ádám Georgiádes ◽  
István M Mándity ◽  
Lóránd Kiss ◽  
Ferenc Fülöp

The preparation of novel multi-substituted 1,2,3-triazole-modified β-aminocyclohexanecarboxylic acid derivatives in a simple and efficient continuous-flow procedure is reported. The 1,3-dipolar cycloaddition reactions were performed with copper powder as a readily accessible Cu(I) source. Initially, high reaction rates were achieved under high-pressure/high-temperature conditions. Subsequently, the reaction temperature was lowered to room temperature by the joint use of both basic and acidic additives to improve the safety of the synthesis, as azides were to be handled as unstable reactants. Scale-up experiments were also performed, which led to the achievement of gram-scale production in a safe and straightforward way. The obtained 1,2,3-triazole-substituted β-aminocyclohexanecarboxylates can be regarded as interesting precursors for drugs with possible biological effects.

Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 953
Author(s):  
Lorenzo Degli Esposti ◽  
Alessandro Dotti ◽  
Alessio Adamiano ◽  
Claudia Fabbi ◽  
Eride Quarta ◽  
...  

Calcium phosphate nanoparticles (CaP NPs) are an efficient class of nanomaterials mainly used for biomedical applications but also very promising in other sectors such as cosmetics, catalysis, water remediation, and agriculture. Unfortunately, as in the case of other nanomaterials, their wide application is hindered by the difficulty to control size, morphology, purity and degree of particle aggregation in the translation from laboratory to industrial scale production that is usually carried out in batch or semi-batch systems. In this regard, the use of continuous flow synthesis can help to solve this problem, providing more homogenous reaction conditions and highly reproducible synthesis. In this paper, we have studied with a design of experiment approach the precipitation of citrate functionalized CaP NPs aided by sonication using a continuous flow wet chemical precipitation, and the effect of some of the most relevant process factors (i.e., reactant flow rate, sonication amplitude, and maturation time) on the physico-chemical properties of the NPs were evaluated. From the statistical data analysis, we have found that CaP NP dimensions are influenced by the reactor flow rate, while the crystalline domain dimensions and product purity are influenced by the maturation process. This work provides a deeper understanding of the relationships between reaction process factors and CaP NP properties, and is a relevant contribution for the scale-up production of CaP NPs for nanomedical or other applications.


2015 ◽  
Vol 70 (4) ◽  
pp. 207-214 ◽  
Author(s):  
Daniela Vitzthum ◽  
Stefanie A. Hering ◽  
Lukas Perfler ◽  
Hubert Huppertz

AbstractOrthorhombic dysprosium orthogallate DyGaO3 and trigonal gallium orthoborate GaBO3 were synthesized in a Walker-type multianvil apparatus under high-pressure/high-temperature conditions of 8.5 GPa/1350 °C and 8 GPa/700 °C, respectively. Both crystal structures could be determined by single-crystal X-ray diffraction data collected at room temperature. The orthorhombic dysprosium orthogallate crystallizes in the space group Pnma (Z = 4) with the parameters a = 552.6(2), b = 754.5(2), c = 527.7(2) pm, V = 0.22002(8) nm3, R1 = 0.0309, and wR2 = 0.0662 (all data) and the trigonal compound GaBO3 in the space group R3̅c (Z = 6) with the parameters a = 457.10(6), c = 1419.2(3) pm, V = 0.25681(7) nm3, R1 = 0.0147, and wR2 = 0.0356 (all data).


2017 ◽  
Vol 72 (1) ◽  
pp. 69-76 ◽  
Author(s):  
Daniela Vitzthum ◽  
Michael Schauperl ◽  
Klaus R. Liedl ◽  
Hubert Huppertz

AbstractOrthorhombic In3B5O12 was synthesized in a Walker-type multianvil apparatus under high-pressure/high-temperature conditions of 12.2 GPa and 1500°C. Its structure is isotypic to the rare earth analogs RE3B5O12 (RE=Sc, Er–Lu). In the field of indium borate chemistry, In3B5O12 is the third known ternary indium borate besides InBO3 and InB5O9. The crystal structure of In3B5O12 has been determined via single-crystal X-ray diffraction data collected at room temperature. It crystallizes in the orthorhombic space group Pmna with the lattice parameters a=12.570(2), b=4.5141(4), c=12.397(2) Å, and V=703.4(2) Å3. IR and Raman bands of In3B5O12 were theoretically determined and assigned to experimentally recorded spectra.


2010 ◽  
Vol 65 (10) ◽  
pp. 1206-1212 ◽  
Author(s):  
Almut Haberer ◽  
Reinhard Kaindl ◽  
Hubert Huppertz

The praseodymium orthoborate λ -PrBO3 was synthesized from Pr6O11, B2O3, and PrF3 under high-pressure / high-temperature conditions of 3 GPa and 800 °C in a Walker-type multianvil apparatus. The crystal structure was determined on the basis of single-crystal X-ray diffraction data, collected at room temperature. The title compound crystallizes in the orthorhombic aragonite-type structure, space group Pnma, with the lattice parameters a = 577.1(2), b = 506.7(2), c = 813.3(2) pm, and V = 0.2378(2) nm3, with R1 = 0.0400 and wR2 = 0.0495 (all data). Within the trigonal-planar BO3 groups, the average B-O distance is 137.2 pm. The praseodymium atoms are ninefold coordinated by oxygen atoms.


2011 ◽  
Vol 66 (2) ◽  
pp. 107-114 ◽  
Author(s):  
Stephanie C. Neumair ◽  
Johanna S. Knyrim ◽  
Oliver Oeckler ◽  
Reinhard Kaindl ◽  
Hubert Huppertz

The cubic iron hydroxy boracite Fe3B7O13OH・1.5H2O was synthesized from Fe2O3 and B2O3 under high-pressure/high-temperature conditions of 3 GPa and 960 °C in a modified Walker-type multianvil apparatus. The crystal structure was determined at room temperature by X-ray diffraction on single crystals. It crystallizes in the cubic space group F4̄3c (Z = 8) with the parameters a = 1222.4(2) pm, V = 1.826(4) nm3, R1 = 0.0362, and wR2 = 0.0726 (all data). The B-O network is similar to that of other cubic boracites.


2020 ◽  
Author(s):  
Tomas Hardwick ◽  
Rossana Cicala ◽  
Nisar Ahmed

<p>Chiral compounds have become of great interest to the pharmaceutical industry as they possess various biological activities. Concurrently, the concept of “memory of chirality” has been proven as a powerful tool in asymmetric synthesis, while flow chemistry has begun its rise as a new enabling technology to add to the ever increasing arsenal of techniques available to the modern day chemist. Here, we have employed a new simple electrochemical microreactor design to oxidise an L-proline derivative at room temperature in continuous flow. Compared to batch, organic electrosynthesis via microflow reactors are advantageous because they allow shorter reaction times, optimization and scale up, safer working environments, and high selectivities (e.g. reduce overoxidation). Flow electrochemical reactors also provide high surface-to-volume ratios and impart the possibility of excluding the supporting electrolyte due to a very short interelectrode distance. By the comparison of Hofer Moest type electrochemical oxidations at room temperature in batch and flow, we conclude that continuous flow electrolysis is superior to batch, producing a good yield and a higher enantiomeric excess. These results show that continuous flow has the potential to act as a new enabling technology for asymmetric synthesis to replace some aspects of conventional batch electrochemical processes. </p>


2020 ◽  
Author(s):  
Tomas Hardwick ◽  
Rossana Cicala ◽  
Nisar Ahmed

<p>Many chiral compounds have become of great interest to the pharmaceutical industry as they possess various biological activities. Concurrently, the concept of “memory of chirality” has been proven as a powerful tool in asymmetric synthesis, while flow chemistry has begun its rise as a new enabling technology to add to the ever increasing arsenal of techniques available to the modern day chemist. Here, we have employed a new simple electrochemical microreactor design to oxidise an L-proline derivative at room temperature in continuous flow. Electrochemical methods are inherently green and environmentally benign. However, organic electrosynthesis via microflow reactor has number of advantages such as fast reaction’s time, optimization and scale up, safer environment, high selectivities and reduce chances of overoxidation. Flow electrochemical reactor provides high surface-to-volume ratio and reactions are possible to perform in the reactor without a supporting electrolyte due to a very short interelectrode distance. By the comparison of Hofer Moest type electrochemical oxidations at room temperature in batch and flow, we have achieved that continuous flow electrolysis is better than batch electrolysis, producing a good yield (71%) and a better enantiomeric excess (64%). These results show that continuous flow electrolysis has the potential to act as a new enabling technology for asymmetric synthesis to replace some aspects of conventional batch electrochemical processes. </p>


2008 ◽  
Vol 63 (6) ◽  
pp. 707-712 ◽  
Author(s):  
Johanna S. Knyrim ◽  
Hubert Huppertz

The high-pressure phase β -ZrB2O5 represents the first ternary borate in the system Zr-B-O. The compound was synthesized under high-pressure / high-temperature conditions of 7.5 GPa and 1100 °C in a Walker-type multianvil apparatus. The crystal structure was determined on the basis of single crystal X-ray diffraction data, collected at room temperature. The monoclinic zirconium borate crystallizes in the space group P21/c with the lattice parameters a = 439.04(9), b = 691.2(2), c = 896.8(2) pm, and β = 90.96(3)°. The structure is isotypic to the high-pressure phase β -HfB2O5, which is built up from layers of exclusively corner-sharing BO4 tetrahedra. Between these layers, the cations are coordinated square-antiprismatically by eight oxygen atoms.


2008 ◽  
Vol 63 (2) ◽  
pp. 193-198 ◽  
Author(s):  
Birgit Heying ◽  
Ute Ch. Rodewald ◽  
Gunter Heymann ◽  
Wilfried Hermes ◽  
Falko M. Schappacher ◽  
...  

The high-temperature modification of LuAgSn was obtained by arc-melting an equiatomic mixture of the elements followed by quenching the melt on a water-cooled copper crucible. HT-LuAgSn crystallizes with the NdPtSb-type structure, space group P63mc: a = 463.5(1), c = 723.2(1) pm, wR2 = 0.0270, 151 F2, and 11 variables. The silver and tin atoms build up two-dimensional, puckered [Ag3Sn3] networks (276 pm Ag-Sn) that are charge-balanced and separated by the lutetium atoms. The Ag-Sn distances between the [Ag3Sn3] layers of 294 pm are much longer. Single crystals of isotypic DyAgSn (a = 468.3(1), c = 734.4(1) pm, wR2 = 0.0343, 411 F2, and 11 variables) and HoAgSn (a = 467.2(1), c = 731.7(2) pm, wR2 = 0.0318, 330 F2, and 11 variables) were obtained from arc-melted samples. Under high-pressure (up to 12.2 GPa) and high-temperature (up to 1470 K) conditions, no transitions to a ZrNiAl-related phase have been observed for DyAgSn, HoAgSn, and YbAgSn. HT-TmAgSn shows Curie-Weiss paramagnetism with μeff = 7.53(1) μB/Tm atom and θP = −15.0(5) K. No magnetic ordering was evident down to 3 K. HT-LuAgSn is a Pauli paramagnet. Room-temperature 119Sn Mössbauer spectra of HT-TmAgSn and HT-LuAgSn show singlet resonances with isomer shifts of 1.78(1) and 1.72(1) mm/s, respectively


Sign in / Sign up

Export Citation Format

Share Document