scholarly journals Calcium Phosphate Nanoparticle Precipitation by a Continuous Flow Process: A Design of an Experiment Approach

Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 953
Author(s):  
Lorenzo Degli Esposti ◽  
Alessandro Dotti ◽  
Alessio Adamiano ◽  
Claudia Fabbi ◽  
Eride Quarta ◽  
...  

Calcium phosphate nanoparticles (CaP NPs) are an efficient class of nanomaterials mainly used for biomedical applications but also very promising in other sectors such as cosmetics, catalysis, water remediation, and agriculture. Unfortunately, as in the case of other nanomaterials, their wide application is hindered by the difficulty to control size, morphology, purity and degree of particle aggregation in the translation from laboratory to industrial scale production that is usually carried out in batch or semi-batch systems. In this regard, the use of continuous flow synthesis can help to solve this problem, providing more homogenous reaction conditions and highly reproducible synthesis. In this paper, we have studied with a design of experiment approach the precipitation of citrate functionalized CaP NPs aided by sonication using a continuous flow wet chemical precipitation, and the effect of some of the most relevant process factors (i.e., reactant flow rate, sonication amplitude, and maturation time) on the physico-chemical properties of the NPs were evaluated. From the statistical data analysis, we have found that CaP NP dimensions are influenced by the reactor flow rate, while the crystalline domain dimensions and product purity are influenced by the maturation process. This work provides a deeper understanding of the relationships between reaction process factors and CaP NP properties, and is a relevant contribution for the scale-up production of CaP NPs for nanomedical or other applications.

2019 ◽  
Vol 23 (5) ◽  
pp. 1069-1077 ◽  
Author(s):  
Clemens Stueckler ◽  
Peter Hermsen ◽  
Bas Ritzen ◽  
Maria Vasiloiu ◽  
Peter Poechlauer ◽  
...  

Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 446 ◽  
Author(s):  
Roberto Fiorenza ◽  
Stefano Andrea Balsamo ◽  
Luisa D’Urso ◽  
Salvatore Sciré ◽  
Maria Violetta Brundo ◽  
...  

Three different Advanced Oxidation Processes (AOPs) have been investigated for the degradation of the imidacloprid pesticide in water: photocatalysis, Fenton and photo-Fenton reactions. For these tests, we have compared the performance of two types of CeO2, employed as a non-conventional photocatalyst/Fenton-like material. The first one has been prepared by chemical precipitation with KOH, while the second one has been obtained by exposing the as-synthetized CeO2 to solar irradiation in H2 stream. This latter treatment led to obtain a more defective CeO2 (coded as “grey CeO2”) with the formation of Ce3+ sites on the surface of CeO2, as determined by Raman and X-ray Photoelectron Spectroscopy (XPS) characterizations. This peculiar feature has been demonstrated as beneficial for the solar photo–Fenton reaction, with the best performance exhibited by the grey CeO2. On the contrary, the bare CeO2 showed a photocatalytic activity higher with respect to the grey CeO2, due to the higher exposed surface area and the lower band-gap. The easy synthetic procedures of CeO2 reported here, allows to tune and modify the physico-chemical properties of CeO2, allowing a choice of different CeO2 samples on the basis of the specific AOPs for water remediation. Furthermore, neither of the samples have shown any critical toxicity.


2013 ◽  
Vol 9 ◽  
pp. 1508-1516 ◽  
Author(s):  
Sándor B Ötvös ◽  
Ádám Georgiádes ◽  
István M Mándity ◽  
Lóránd Kiss ◽  
Ferenc Fülöp

The preparation of novel multi-substituted 1,2,3-triazole-modified β-aminocyclohexanecarboxylic acid derivatives in a simple and efficient continuous-flow procedure is reported. The 1,3-dipolar cycloaddition reactions were performed with copper powder as a readily accessible Cu(I) source. Initially, high reaction rates were achieved under high-pressure/high-temperature conditions. Subsequently, the reaction temperature was lowered to room temperature by the joint use of both basic and acidic additives to improve the safety of the synthesis, as azides were to be handled as unstable reactants. Scale-up experiments were also performed, which led to the achievement of gram-scale production in a safe and straightforward way. The obtained 1,2,3-triazole-substituted β-aminocyclohexanecarboxylates can be regarded as interesting precursors for drugs with possible biological effects.


Author(s):  
S. Pragati ◽  
S. Kuldeep ◽  
S. Ashok ◽  
M. Satheesh

One of the situations in the treatment of disease is the delivery of efficacious medication of appropriate concentration to the site of action in a controlled and continual manner. Nanoparticle represents an important particulate carrier system, developed accordingly. Nanoparticles are solid colloidal particles ranging in size from 1 to 1000 nm and composed of macromolecular material. Nanoparticles could be polymeric or lipidic (SLNs). Industry estimates suggest that approximately 40% of lipophilic drug candidates fail due to solubility and formulation stability issues, prompting significant research activity in advanced lipophile delivery technologies. Solid lipid nanoparticle technology represents a promising new approach to lipophile drug delivery. Solid lipid nanoparticles (SLNs) are important advancement in this area. The bioacceptable and biodegradable nature of SLNs makes them less toxic as compared to polymeric nanoparticles. Supplemented with small size which prolongs the circulation time in blood, feasible scale up for large scale production and absence of burst effect makes them interesting candidates for study. In this present review this new approach is discussed in terms of their preparation, advantages, characterization and special features.


2018 ◽  
Vol 69 (5) ◽  
pp. 1149-1151
Author(s):  
Laura Ruxandra Zicman ◽  
Elena Neacsu ◽  
Felicia Nicoleta Dragolici ◽  
Catalin Ciobanu ◽  
Gheorghe Dogaru ◽  
...  

Ultrafiltration of untreated and pretreated aqueous radioactive wastes was conducted using a spiral-wound polysulphonamide membrane. The influence of process factors on its performances was experimental studied and predicted. Permeate volumetric flux and permeate total suspended solids (TSS) were measured at different values of feed flow rate (7 and 10 m3/h), operating pressure (0.1-0.4 MPa), and feed TSS (15 and 60 mg/L). Permeate flux (42-200 L/(m2�h)) increased with feed flow rate and operating pressure as well as it decreased with an increase in feed TSS, whereas permeate TSS (0.1-33.2 mg/L) exhibited an opposite trend. A 23 factorial plan was used to establish correlations between dependent and independent variables of ultrafiltration process.


2020 ◽  
Vol 27 (2) ◽  
pp. 105-110 ◽  
Author(s):  
Niaz Ahmad ◽  
Muhammad Aamer Mehmood ◽  
Sana Malik

: In recent years, microalgae have emerged as an alternative platform for large-scale production of recombinant proteins for different commercial applications. As a production platform, it has several advantages, including rapid growth, easily scale up and ability to grow with or without the external carbon source. Genetic transformation of several species has been established. Of these, Chlamydomonas reinhardtii has become significantly attractive for its potential to express foreign proteins inexpensively. All its three genomes – nuclear, mitochondrial and chloroplastic – have been sequenced. As a result, a wealth of information about its genetic machinery, protein expression mechanism (transcription, translation and post-translational modifications) is available. Over the years, various molecular tools have been developed for the manipulation of all these genomes. Various studies show that the transformation of the chloroplast genome has several advantages over nuclear transformation from the biopharming point of view. According to a recent survey, over 100 recombinant proteins have been expressed in algal chloroplasts. However, the expression levels achieved in the algal chloroplast genome are generally lower compared to the chloroplasts of higher plants. Work is therefore needed to make the algal chloroplast transformation commercially competitive. In this review, we discuss some examples from the algal research, which could play their role in making algal chloroplast commercially successful.


1985 ◽  
Vol 50 (10) ◽  
pp. 2122-2133 ◽  
Author(s):  
Jindřich Zahradník ◽  
Marie Fialová ◽  
Jan Škoda ◽  
Helena Škodová

An experimental study was carried out aimed at establishing a data base for an optimum design of a continuous flow fixed-bed reactor for biotransformation of ammonium fumarate to L-aspartic acid catalyzed by immobilized cells of the strain Escherichia alcalescens dispar group. The experimental program included studies of the effect of reactor geometry, catalytic particle size, and packed bed arrangement on reactor hydrodynamics and on the rate of substrate conversion. An expression for the effective reaction rate was derived including the effect of mass transfer and conditions of the safe conversion-data scale-up were defined. Suggestions for the design of a pilot plant reactor (100 t/year) were formulated and decisive design parameters of such reactor were estimated for several variants of problem formulation.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Daniil Marinov ◽  
Jean-François de Marneffe ◽  
Quentin Smets ◽  
Goutham Arutchelvan ◽  
Kristof M. Bal ◽  
...  

AbstractThe cleaning of two-dimensional (2D) materials is an essential step in the fabrication of future devices, leveraging their unique physical, optical, and chemical properties. Part of these emerging 2D materials are transition metal dichalcogenides (TMDs). So far there is limited understanding of the cleaning of “monolayer” TMD materials. In this study, we report on the use of downstream H2 plasma to clean the surface of monolayer WS2 grown by MOCVD. We demonstrate that high-temperature processing is essential, allowing to maximize the removal rate of polymers and to mitigate damage caused to the WS2 in the form of sulfur vacancies. We show that low temperature in situ carbonyl sulfide (OCS) soak is an efficient way to resulfurize the material, besides high-temperature H2S annealing. The cleaning processes and mechanisms elucidated in this work are tested on back-gated field-effect transistors, confirming that transport properties of WS2 devices can be maintained by the combination of H2 plasma cleaning and OCS restoration. The low-damage plasma cleaning based on H2 and OCS is very reproducible, fast (completed in a few minutes) and uses a 300 mm industrial plasma etch system qualified for standard semiconductor pilot production. This process is, therefore, expected to enable the industrial scale-up of 2D-based devices, co-integrated with silicon technology.


2021 ◽  
pp. 1-37
Author(s):  
Ana Gabriela Sierra-Sánchez ◽  
Verónica Martínez-Miranda ◽  
Elia Alejandra Teutli-Sequeira ◽  
Ivonne Linares-Hernández ◽  
Guadalupe Vázquez-Mejía ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document