scholarly journals Synthesis of 9-phenylcarbazole hyper-cross-linked polymers in different conditions and adsorption behavior for carbon dioxide

2019 ◽  
Author(s):  
Dandan Fang ◽  
Xiaodong Li ◽  
Meishuai Zou ◽  
Xiaoyan Guo ◽  
Aijuan Zhang

To systematically explore the effects of the synthesis conditions on the porosity of hyper-cross-linked polymers (HCPs), a series of 9-phenylcarbazole HCPs (P1-P11) have been made by changing the dosage of cross-linker, the reaction temperature, catalyst usage and solvent dosage. Fourier transform infrared spectroscopy is utilized to characterize the structure of the obtained polymers. The TG analysis shows a high thermal stability of the HCPs. More importantly, comparative studies on the porous properties reveals that: molar ration of cross-linker and building block is the main factor of BET specific surface area; Improving reaction temperature or the usage of catalyst could increase the total pore volume greatly but sacrifice part of BET specific surface area; Fortunately changing solvent dosage could remedy this situation, that is slightly changing solvent dosage could simultaneously obtain high surface area and high total pore volume. The BET specific surface areas of P3 is up to 769 m2g-1 with narrow pore size distribution and the CO2 adsorption capacity of P11 is up to 52.4 cm3g-1 (273 K/1.00 bar).

2019 ◽  
Vol 15 ◽  
pp. 2856-2863 ◽  
Author(s):  
Dandan Fang ◽  
Xiaodong Li ◽  
Meishuai Zou ◽  
Xiaoyan Guo ◽  
Aijuan Zhang

To systematically explore the effects of the synthesis conditions on the porosity of hyper-cross-linked polymers (HCPs), a series of 9-phenylcarbazole (9-PCz) HCPs (P1–P11) has been made by changing the molar ratio of cross-linker to monomer, the reaction temperature T 1, the used amount of catalyst and the concentration of reactants. Fourier transform infrared spectroscopy was utilized to characterize the structure of the obtained polymers. The TG analysis of the HCPs showed good thermal stability. More importantly, a comparative study on the porosity revealed that: the molar ratio of cross-linker to monomer was the main influence factor of the BET specific surface area. Increasing the reaction temperature T 1 or changing the used amount of catalyst could improve the total pore volume greatly but sacrificed a part of the BET specific surface area. Fortunately changing the concentration of reactants could remedy this situation. Slightly changing the concentration of reactants could simultaneously obtain a high surface area and a high total pore volume. The BET specific surface areas of P3 was up to 769 m2 g−1 with narrow pore size distribution and the CO2 adsorption capacity of P11 was up to 52.4 cm3 g−1 (273 K/1.00 bar).


2010 ◽  
Vol 4 (2) ◽  
pp. 110-116 ◽  
Author(s):  
Silvester Tursiloadi ◽  
Hiroshi Hirashima

Stable anatase is attractive to its notable functions for photo catalysis and photon-electron transfer.   Stable anatase TiO­2 containing amorphous SiO2 aerogel was prepared by hydrolysis of Ti (OC3H7)4 and Si (OC3H7)4 in a 2-propanol solution with acid catalyst. The solvent in wet gels was supercritically extracted in CO2 at 60 oC and 22 Mpa. Thermal evolutions of the microstructure of the gels were evaluated by TGA-DTA, N2 adsorption and XRD. A stable anatase TiO2 containing amorphous SiO2 aerogel with a BET specific surface area of 365 m2/g and a total pore volume of 0.20 cm3/g was obtained as prepared condition. The anatase phase was stable after calcination up to 1000 oC, and BET specific surface area, total pore volume and average pore diameter did not change significantly after calcination up to 900 oC.   Keywords: Supercritical extraction, sol-gel, aerogel, stable anatase structure


2018 ◽  
Vol 37 (1) ◽  
pp. 194-218 ◽  
Author(s):  
Hongjie Xu ◽  
Shuxun Sang ◽  
Jingfen Yang ◽  
Jun Jin ◽  
Huihu Liu ◽  
...  

Indentifying reservoir characteristics of coals and their associated shales is very important in understanding the co-exploration and co-production potential of unconventional gases in Guizhou, China. Accordingly, comprehensive experimental results of 12 core samples from well LC-1# in the northern Guizhou were used and analyzed in this paper to better understand their vertical reservoir study. Coal and coal measured shale, in Longtan Formation, are rich in organic matter, with postmature stage of approximately 3.5% and shales of type III kerogen with dry gas generation. All-scale pore size analysis indicates that the pore size distribution of coal and shale pores is mainly less than 20 nm and 100 nm, respectively. Pore volume and area of coal samples influenced total gas content as well as desorbed gas and lost gas content. Obvious relationships were observed between residual gas and BET specific surface area and BJH total pore volume (determined by nitrogen adsorption). For shale, it is especially clear that the desorbed gas content is negatively correlated with BET specific surface area, BJH total pore volume and clay minerals. However, the relationships between desorbed gas and TOC (total organic carbon) as well as siderite are all well positive. The coals and shales were shown to have similar anoxic conditions with terrestrial organic input, which is beneficial to development of potential source rocks for gas. However, it may be better to use a low gas potential assessment for shales in coal-bearing formation because of their low S1+S2 values and high thermal evolution. Nevertheless, the coalbed methane content is at least 10 times greater than the shale gas content with low desorbed gases, indicating that the main development unconventional natural gas should be coalbed methane, or mainly coalbed methane with supplemented shale gas.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 298
Author(s):  
Chenlong Ding ◽  
Jinxian He ◽  
Hongchen Wu ◽  
Xiaoli Zhang

Ordos Basin is an important continental shale gas exploration site in China. The micropore structure of the shale reservoir is of great importance for shale gas evaluation. The Taiyuan Formation of the lower Permian is the main exploration interval for this area. To examine the nanometer pore structures in the Taiyuan Formation shale reservoirs in the Lin-Xing area, Northern Shaanxi, the microscopic pore structure characteristics were analyzed via nitrogen adsorption experiments. The pore structure parameters, such as specific surface area, pore volume, and aperture distribution, of shale were calculated; the significance of the pore structure for shale gas storage was analyzed; and the main controlling factors of pore development were assessed. The results indicated the surface area and hole volume of the shale sample to be 0.141–2.188 m2/g and 0.001398–0.008718 cm3/g, respectively. According to the IUPAC (International Union of Pure and Applied Chemistry) classification, mesopores and macropores were dominant in the pore structure, with the presence of a certain number of micropores. The adsorption curves were similar to the standard IV (a)-type isotherm line, and the hysteresis loop type was mainly similar to H3 and H4 types, indicating that most pores are dominated by open type pores, such as parallel plate-shaped pores and wedge-shaped slit pores. The micropores and mesopores provide the vast majority of the specific surface area, functioning as the main area for the adsorption of gas in the shale. The mesopores and macropores provide the vast majority of the pore volume, functioning as the main storage areas for the gas in the shale. Total organic carbon had no notable linear correlation with the total pore volume and the specific surface area. Vitrinite reflectance (Ro) had no notable correlation with the specific surface area, but did have a low “U” curve correlation with the total pore volume. There was no relationship between the quartz content and specific surface area and total pore volume. In addition, there was no notable correlation between the clay mineral content and total specific surface area and total pore volume.


2018 ◽  
Vol 37 (1) ◽  
pp. 251-272 ◽  
Author(s):  
Junjian Zhang ◽  
Chongtao Wei ◽  
Gaoyuan Yan ◽  
Guanwen Lu

To better understand the structural characteristic of adsorption pores (pore diameter < 100 nm) of coal reservoirs around the coalbed methane production areas of western Yunnan and eastern Guizhou, we analyzed the structural and fractal characteristics of pore size range of 0.40–2.0 nm and 2–100 nm in middle–high rank coals ( Ro,max = 0.93–3.20%) by combining low-temperature N2/CO2 adsorption tests and surface/volume fractal theory. The results show that the coal reservoirs can be divided into three categories: type A ( Ro,max < 2.15%), type B (2.15% <  Ro,max <2.50%), and type C ( Ro,max > 2.15%). The structural parameters of pores in the range from 2 to 100 nm are influenced by the degree of coal metamorphism and the compositional parameters (e.g., ash and volatile matter). The dominant diameters of the specific surface areas are 10–50 nm, 2–50 nm, and 2–10 nm, respectively. The pores in the range from <2 nm provide the largest proportion of total specific surface area (97.22%–99.96%) of the coal reservoir, and the CO2-specific surface area and CO2-total pore volume relationships show a positive linear correlation. The metamorphic degree has a much greater control on the pores (pore diameter less than 2 nm) structural parameters than those of the pore diameter ranges from 2 to 100 nm. Dv1 and Dv2 can characterize the structure of 2–100 nm adsorption pores, and Dv1 (volume heterogeneity) has a positive correlation with the pore structural parameters such as N2-specific surface area and N2-total pore volume. This parameter can be used to characterize volume heterogeneity of 2–10 nm pores. Dv2 (surface heterogeneity) showed type A > type B > type C and was mainly affected by the metamorphism degree. Ds2 can be used to characterize the pore surface heterogeneity of micropores in the range of 0.62–1.50 nm. This parameter has a good correlation with the pore parameters (CO2-total pore volume, CO2-specific surface area, and average pore size) and is expressed as type C < type B < type A. In conclusion, the heterogeneity of the micropores is less than that of the meso- and macropores (2–100 nm). Dv1, Dv2, and Ds2 can be used as effective parameters to characterize the pore structure of adsorption pores. This result can provide a theoretical basis for studying the pore structure compatibility of coal reservoirs in the region.


Nanomaterials ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 896 ◽  
Author(s):  
Hye-Min Lee ◽  
Kwan-Woo Kim ◽  
Young-Kwon Park ◽  
Kay-Hyeok An ◽  
Soo-Jin Park ◽  
...  

In this study, low-density polyethylene (LDPE)-derived activated carbons (PE-AC) were prepared as electrode materials for an electric double-layer capacitor (EDLC) by techniques of cross-linking, carbonization, and subsequent activation under various conditions. The surface morphologies and structural characteristics of the PE-AC were observed by field-emission scanning electron microscope, Cs-corrected field-emission transmission electron microscope, and X-ray diffraction analysis, respectively. The nitrogen adsorption isotherm-desorption characteristics were confirmed by Brunauer–Emmett–Teller, nonlocal density functional theory, and Barrett–Joyner–Halenda equations at 77 K. The results showed that the specific surface area and total pore volume of the activated samples increased with increasing the activation time. The specific surface area, the total pore volume, and mesopore volume of the PE-AC were found to be increased finally to 1600 m2/g, 0.86 cm3/g, and 0.3 cm3/g, respectively. The PE-AC also exhibited a high mesopore volume ratio of 35%. This mesopore-rich characteristic of the activated carbon from the LDPE is considered to be originated from the cross-linking density and crystallinity of precursor polymer. The high specific surface area and mesopore volume of the PE-AC led to their excellent performance as EDLC electrodes, including a specific capacitance of 112 F/g.


2011 ◽  
Vol 239-242 ◽  
pp. 2274-2279 ◽  
Author(s):  
Ying Chun Wang ◽  
Wen Hai Huang ◽  
Ai Hua Yao ◽  
De Ping Wang

A simple method to prepare hollow hydroxyapatite (HAP) microspheres with mespores on the surfaces is performed using a precipitation method assisted with Li2O-CaO-B2O3(LCB) glass fabrication process. This research is concerned with the effect of sintering temperature on the microstructure evolution, phase purity, surface morphology, specific surface area, and porosity after sintering process. The microspheres were sintered in air atmosphere at temperatures ranging from 500 to 900 °C. The starting hollow HAP microspheres and the sintered specimens were characterized by scanning electron microscope, X-ray diffractometer, specific surface area analyzer, and Hg porosimetry, respectively. The as-prepared microspheres consisted of calcium deficient hydroxyapatite. The results showed that the as-prepared hollow HAP microspheres had the highest specific surface areas, and the biggest total pore volume. The pore size distribution of the as-prepared hollow HAP microspheres were mainly the mesopores in the range of 2~40 nm. The specific surface area and total pore volume of hollow HAP microspheres decreased with increasing sintering temperature. Whereas the mean pore size increased with increasing sintering temperature. It showed that at 700°C, Ca-dHAP decomposes into a biphasic mixture of HAP and β-calcium phosphate(TCP).


2011 ◽  
Vol 194-196 ◽  
pp. 2472-2479 ◽  
Author(s):  
Bao Lin Xing ◽  
Chuan Xiang Zhang ◽  
Lun Jian Chen ◽  
Guang Xu Huang

Activated carbons (ACs) were prepared from lignite by microwave (MW) and electrical furnace (EF) heating with KOH as activation agent. In order to compare pore structures and electrochemical performances of ACs prepared by both heating methods, the ACs were characterized by N2 adsorption at 77K, X-ray diffraction (XRD) and scanning electron microscope (SEM). The electrochemical performances of Electrochemical capacitors (ECs) with ACs as electrodes in 3mol/L KOH electrolyte were evaluated by constant current charge-discharge, cyclic voltammetry and electrochemical impedance spectroscopy. The results show that the pore structures of ACs prepared by MW and EF heating significantly enhance when the weight ratio of KOH to coal increases from 2 to 4. The BET specific surface area, total pore volume, the ratio of mesopore and average pore diameter of ACs prepared by MW heating (denoted as AC-MW4) reaches 2094m2/g, 1.193cm3/g, 53.6%, 2.28nm when the weight ratio of KOH to coal is 4, and ACs prepared by EF heating (denoted as AC-EF4) reaches 2580m2/g, 1.683cm3/g, 67.3%, 2.61nm. The ECs with AC-MW4 and AC-EF4 as electrodes present a high specific capacitance of 348F/g and 377F/g at a current density of 50mA/g, and still remain 325F/g and 350F/g after 500 cycles, respectively. Although the specific surface area, total pore volume and specific capacitance of ACs prepared by MW heating are slightly lower than EF heating, taking into account the heating time in the activation process, ACs prepared by EF heating needs approximate 140min, while MW heating only needs 10min, which have demonstrated that microwave heating technology is a promising and efficient technique to prepare ACs.


2014 ◽  
Vol 2 (26) ◽  
pp. 10126-10130 ◽  
Author(s):  
Yuming Chen ◽  
Xiaoyan Li ◽  
Kyu-Sung Park ◽  
Jianhe Hong ◽  
Jie Song ◽  
...  

A novel carbon-sulfur nanoarchitecture with a high Brunauer–Emmett–Teller (BET) specific surface area of ~80 m2 g−1 and a total pore volume of ~0.2cm3 g−1 shows a high capacity of ~ 700 mAh g−1 at 1 C and 520 mAh g−1 at 5 C after 100 cycles, which makes it a superior cathode material for a rechargeable Li–S battery.


2017 ◽  
Vol 36 (3-4) ◽  
pp. 904-918 ◽  
Author(s):  
Deyong Guo ◽  
Xiaojie Guo

In this paper, scanning electron microscopy, low-temperature N2 adsorption and CH4 isothermal adsorption experiments were performed on 11 coal samples with Ro,max between 0.98 and 3.07%. The pore structure characteristics of coals (specific surface area, total volume distribution) were studied to assess the gas adsorption capacity. The results indicate that there is significant heterogeneity on coal surface, containing numerous channel-like pores, bottle-shaped pores and wedge-shaped pores. Both Langmuir volume (VL) and Langmuir pressure (PL) show a stage change trend with the increase of coalification degree. For different coalification stages, there exist different factors influencing the VL and PL values. For low-rank coals (Ro,max < 1.1%), the increase of VL values and decrease of PL values are mainly due to the abundant primary pore and fracture within coal. For middle-rank coals (1.1% < Ro,max < 2.1%), the moisture content, vitrinite content and total pore volume are all the factors influencing VL, and the reduction of PL is mainly attributed to the decrease of moisture content and inertinite content. Meanwhile, this result is also closely related to the pore shape. For high-rank coals (Ro,max > 2.1%), VL values gradually increase and reach the maximum. When the coal has evolved into anthracite, liquid hydrocarbon within pore begins pyrolysis and gradually disappears, and a large number of macropores are converted into micropores, leading to the increase of specific surface area and total pore volume, corresponding to the increase of VL. In addition, the increase of vitrinite content within coal also contributes to the increase of VL. PL, reaches the minimum, indicating that the adsorption rate reaches the largest at the low pressure stage. The result is mainly controlled by the specific surface area and total pore volume of coal samples. This research results will provide a clearer insight into the relationship between adsorption parameters and coal rank, moisture content, maceral composition and pore structure, and it is of great significance for better assessing the gas adsorption capacity.


Sign in / Sign up

Export Citation Format

Share Document