Evaluation of fire-retardant effectiveness of coatings for steel structures

2020 ◽  
pp. 43-54
Author(s):  
Владимир Ильич Голованов ◽  
Андрей Владимирович Пехотиков ◽  
Владимир Валерьевич Павлов

Представлены результаты анализа экспериментальной и аналитической оценки огнезащитной эффективности покрытий для стальных конструкций. Обобщены данные многолетних исследований по определению зависимостей от температуры таких теплофизических характеристик, как теплопроводность и теплоемкость. Разработана структурно-методологическая схема выбора огнезащитных покрытий для стальных конструкций в целях обеспечения нормативных требований по огнестойкости. Проведены экспериментальные исследования по определению огнезащитной эффективности терморасширяющихся покрытий на эпоксидной основе при воздействии температурного режима горения углеводородов. Рассмотрен вопрос о гармонизации методики экспериментальной оценки огнезащитной эффективности средств огнезащиты для стальных конструкций с действующими европейскими нормами. Установлены критерии выбора пассивной огнезащиты, зависящие от области применения способов огнезащиты. Steel structures have high strength, relative lightness and durability, but when exposed to high temperatures in a fire, they deform, lose stability and load-bearing capacity. The collapse of load-bearing steel structures can occur in 10-15 minutes after the fire start. The actual fire resistance limit of structures can be increased by using the active and passive fire protection systems. The use of the active system for increasing the actual fire resistance limit is not provided in the regulatory documents. Passive fire protection is a complex of technical solutions including the use of non-flammable materials and bulging compounds. It is also an integral part of the building structure that ensures the required fire resistance limit. Assessment of fire resistance of building structures of residential, public, warehouse and industrial buildings is carried out taking into account the temperature regime (cellulose) of a standard fire. At oil and gas, petrochemical enterprises as well as at oil production platforms fires can occur at combustion of various hydrocarbon fuels which are characterized by a rapid temperature increase to 1100 °C. In this case, in accordance with GOST R EN 1363-2-2014, the temperature regime of hydrocarbon combustion is used to assess the fire resistance of building structures. The fire-retardant effectiveness of fire protection means for steel structures is determined by the heating time of the standard I-shaped column without applying a static load on the sample to the average “critical” temperature of the steel of 500 °C. Materials used for fire protection of steel structures must have a good thermal insulation ability, which is estimated by the coefficient of thermal conductivity. When heated to high temperatures, the thermal conductivity coefficient of fire-resistant materials varies depending on their composition and temperature. Based on the analysis of research to determine the fire-retardant effectiveness of fire protection means for steel structures there was developed a structural and methodological scheme that allows to make a choice of fire protection. Currently, as a fire protection there are widely used intumescent paints and thermo-expandable coatings. Taking into account the lack of knowledge of the influence of long-term operation and a large number of other technological factors on the fire-retardant effectiveness of coatings of steel structures covered with intumescent paints, it would be right to limit the use of such type of fire protection for load-bearing structures contributing to the overall sustainability of buildings with a required fire resistance of R 30. For fire protection of steel structures of oil and gas facilities located in the open air, in severe climatic conditions and exposed to aggressive environments there is successfully used a thermo-expandable two-component epoxy-based coating. The analysis of experimental data showed that the use of epoxy-based coatings is suitable for metal structures in the open air. In closed rooms the epoxy intumescent coating should not be used because at high temperature in a fire it ignites with toxic combustion products release.

Author(s):  
V.I. Golovanov ◽  
◽  
A.V. Pekhotikov ◽  
V.V. Pavlov ◽  
◽  
...  

Variants of progressive solutions for the use of efficient fire protection means for steel and reinforced concrete structures of the industrial buildings and structures are considered for the purpose of increasing the actual fire resistance and ensuring the requirements of fire safety norms. Distinctive features of the temperature regimes in the initial phase of a real fire from a standard fire were established when assessing the fire resistance of building structures. It is proposed to use such standardized temperature regimes of fire for assessing the fire resistance of building structures, as standard — in the industrial buildings; temperature regime of hydrocarbons combustion — for oil and gas, petrochemical enterprises, offshore stationary platforms; tunnel temperature regime — in the road and railway tunnels. Considering the operating conditions and performance of work on fire protection, the degree of aggressiveness of the environment, the structural and methodological scheme was developed for selecting passive fire protection for steel structures. Recommendations are given on limiting the use of intumescent paints for load-bearing steel structures involved in the overall stability of buildings, with the required fire resistance limit of no more than 30 minutes. To calculate the temperature over the section of the structure during its heating, the dependences of the change in the coefficients of thermal conductivity and heat capacity of fire-retardant linings under fire were obtained. Experimental studies were conducted related to the fire resistance of reinforced concrete floor slabs and slabs with an external reinforcement system based on the carbon composite material with various types of fire-retardant materials. The issue of protecting the lining blocks of road and railway tunnels from brittle (explosive) destruction of concrete in a fire is considered. It is experimentally confirmed that the addition of polypropylene fibers to the concrete mixture replaces the use of fire protection for the tunnels enclosing structures.


Author(s):  
A. Kovalov ◽  
◽  
Y. Otrosh ◽  
V. Tomenko ◽  
O. Vasylyev ◽  
...  

Abstract. The results of the development of fire-retardant substances based on domestic materials to increase the fire resistance of fire-retardant steel structures are presented. New compositions of fire-retardant substances on the basis of domestic materials capable of swelling are developed. A series of experimental studies to determine the heating temperature of fire-resistant steel structures. For this purpose, samples of reduced size in the form of a steel plate with a flame retardant applied to the heating surface were used. Fire tests of fire-retardant steel plates coated with the developed fire-retardant substance forming a coating on the protected surface, in the conditions of their tests on the standard temperature of the fire using the installation to determine the fire-retardant ability of fire-retardant coatings. The results of experimental determination of temperature from an unheated surface of steel plates with a fire-retardant covering in the conditions of fire influence at a standard temperature mode of a fire are analyzed. Based on the obtained data (temperature in the furnace and from the unheated surface of steel plates with fire protection system) the solution of the inverse problems of thermal conductivity found thermophysical characteristics of fire protection coating (thermal conductivity and specific volume), which can be used for thermal calculation heating of fire-retardant steel structures at arbitrary fire temperatures. The thermophysical characteristics of the formed fire-retardant coating are substantiated to find the characteristics of the fire-retardant ability of the newly created fire-retardant coating and to ensure the fire resistance of fire-retardant steel structures. The efficiency of the developed fire-retardant coating for protection of steel structures is proved.


2020 ◽  
Vol 1 (2) ◽  
pp. 29-40
Author(s):  
S Novak ◽  
M Novak ◽  
O Bedratiuk

The results of the study aimed at further improvement and development of procedures for evaluating methods of determining the fire resistance characteristics of building structures are presented. The features of estimation of methods of determination of characteristics of fire resistance of building structures are determined. It is established that for the validation of experimental-calculation methods intended to determine the thickness of fire protection of building structures, which ensures their fire resistance in a wide range of parameters of these structures, it is impossible to use samples of structures with certain properties due to their inability to create. A procedure for such validation using a computational experiment method is proposed. In this procedure, accurate (conditional) temperature data for steel column specimens are determined by solving a direct one-dimensional non-stationary thermal conductivity problem. The validity of the proposed validation procedure by its application for the experimental calculation method, designed to determine the thickness of fire protection materials for load-bearing steel structures (columns and beams), has been established. It is established that the overwhelming number of calculated values of the thickness of the fire protection materials, determined by this method, exceeds its true values, which indicates the acceptability of the obtained results in terms of providing fire resistance of load-bearing steel structures. It is established that the difference between the calculated and actual values of the thickness of the fire protection materials can reach a considerable value (twice or more).The direction of further researches which are focused on revealing of influence of thermophysical properties of fire protection materials and stress-deformed state of samples of steel structures during the test on the accuracy of the method. This will identify more appropriate procedures for evaluating the method and processing the experimental data with increased accuracy.


2012 ◽  
Vol 594-597 ◽  
pp. 849-859
Author(s):  
Man Li Ou ◽  
Wei Jun Cao ◽  
Long Min Jiang ◽  
Hui Cao

As the result of great changes occurring to mechanical properties under high temperature (fire) conditions, steel structures will soon lose the strength and stiffness and lead to structural damage. Through analysis of the steel structure fire resistance design methods under the conditions of high temperature (fire), this article explores the most used fire protection methods in steel structures—brushing or painting fire-resistant coatings, studies the fire-resistance theory of steel structure under fire conditions; in addition, the author proposes the reasonable thickness of the steel structure fire retardant coating of fire-resistant design through design examples.


Author(s):  
Vasily Prusakov ◽  
Marina Gravit ◽  
Andrey Pekhotikov ◽  
Vladimir Pavlov

Правильное проектирование, устройство и монтаж деформационных швов дают возможность обеспечить длительный срок службы основных несущих и ограждающих конструкций зданий, а также элементов внутренней и внешней отделки. Огнестойкие заполнения устанавливают для компенсации возможных изменений ширины шва от первоначальной ширины в горизонтальные и вертикальные деформационные швы монолитных и сборных железобетонных конструкций зданий и сооружений различного назначения, а также в зазоры между торцом вертикальных стен и межэтажных перекрытий. Для защиты деформационных швов в конструкциях зданий и сооружений от воздействия пожара применяются огнестойкие заделки. В европейских нормативных документах такие противопожарные барьеры специально разрабатываются для применения в деформационных швах и работают при сжатии, растяжении и сдвиге шва. В России изделия и материалы, выполняющие функцию противопожарного барьера, не испытываются в условиях знакопеременной нагрузки. В статье приведена методика испытаний на огнестойкость для деформационного шва в железобетонной конструкции. Получены результаты по параметрам целостности и теплоизолирующей способности для железобетонных плит с последующим в сторону увеличения ширины зазора между плитами и сдвига их относительно друг друга на +25 % составляет не менее 245 мин.Buildings and structures of complex architectural forms and large extent are subject to deformations under the influence of fluctuations in the temperature of the outside air, uneven sedimentation of the soil base, seismic phenomena and other causes. To prevent cracks in bearing and fencing structures, expansion joints are provided that cut the building into compartments. Proper design, construction and execution of expansion joints are of great importance in construction, as they provide the opportunity to provide long service life and fire resistance of the main load-bearing and enclosing structures of buildings, internal and external finishes. Normative requirements for the device and technical parameters of fire protection of expansion joints do not currently exist, and since the expansion joints are elements of load-bearing and enclosing structures, their fire resistance is determined in conjunction with the rest of the elements of fire protection barriers, use and application is regulated by the norms of Russian federal legislation. To increase the overall fire resistance of the construction, special fire barriers are used, which are installed inside the expansion joints. The article presents an overview of the fire barriers of expansion joints of both foreign and domestic producers. It is shown that for the protection of expansion joints in a fire, fire barriers are used, specially designed for use in expansion joints, which are guaranteed to work with compression, stretching and shear. It has been established that the production of innovative fire-retardant materials is one of the main tasks of fire safety. This is also the way of the consistent transformation of the idea into a product that passes through the stages of research, design development, production and realization in civil and industrial buildings. It is necessary to choose a comprehensive solution that ensures the maximum satisfaction of the requirements when performing fire protection work to protect the expansion joint when exposed to a fire. The authors declare that the structures (products) intended for fire protection of the expansion joint should provide a stable own mechanical tensile strength of at least 40%; at least 50% compression; for a shift of not less than 20%, the retention of elastic properties at the manufacturer’s declared maximum tensile-compressive stress per product of not less than 100 cycles. After the test, the structure (article) should not have mechanical damages and deformation of the filler, as well as the manufacturer’s declared fire resistance tested with at least 20% expansion from the design width of the expansion joint. When using other fillers for the fire barrier, it is recommended that the above requirements should be met using material that provides deformation characteristics, both in the compression of the joint and during its stretching, and in the shear, during the entire period of the intended use. Particular attention should be paid to the technology of interfacing the structures (products) of fire barriers when they are installed in expansion joints along the entire length, which is guaranteed to prevent the appearance of technological gaps and voids.


2021 ◽  
Vol 30 (3) ◽  
pp. 16-30
Author(s):  
A. O. Vorosin ◽  
A. P. Parfenenko

Introduction. The international practice of passive fire protection design, as well as some manufactures of fireproofing products recommend to apply fire proofing substances not only to the main element, whose fire resistance limit is standardized, but also to the elements that do not fall under any fire resistance standards. Various support brackets, pipeline supports (hereinafter — PS), etc. can serve as examples. They are not considered as bearing elements according to SP (Construction Regulations) 2.13130.2020, although they are connected to the structures that have fireproofing applied. It is recommended to apply fireproofing substances to such PS within the range of, at least, 450 mm from the point of attachment to the fireproof structure when the area of the PS cross section exceeds 3,000 mm2. No “supplementary” fireproofing is required by the Russian design and fire protection regulations.The subject of research. A change in the fire resistance limit of steel i-girders, caused by the PS heating, depends on the area of the PS cross section and the location of the point of its attachment.The goal. The goal of the research is to analyze the effect, produced by the area of the cross section and the point of attachment, on the fire resistance limit of fireproof steel i-girders in the course of heating.Materials and methods. ANSYS Workbench 2020 R2 (student version) was applied to perform the numerical simulation.Results. The simulation has shown that the PS, having no fireproofing, influences the fire resistance limit of fireproof structures.Conclusions. Currently available methods of analysis of the fire resistance of steel structures take no account of the fire resistance limit reduction, caused by the heating of the PS that has no fireproofing. The numerical simulation has shown that the fire proofing design must take account of the potential reduction in the fire resistance limit of fireproof structures, exposed to the heated PS that has no fire proofing. The further verification of the effect, produced by the PS, that has no fireproofing, on the time to the limit state of a fireproof steel i-girder requires fire tests and supplementary investigations to evaluate the influence of the PS on the heating of vertical fireproof constructions, including the case of the hydrocarbon fire mode.


2019 ◽  
Vol 91 ◽  
pp. 02004 ◽  
Author(s):  
Marina Gravit ◽  
Yana Simonenko ◽  
Leonid Yablonskii

The increased operational properties, main of which - ensuring fire resistance in the conditions of the hydrocarbon mode of the fire, resistance to low temperatures and lack of wet processes at installation are necessary for means of fire protection of structures of buildings and constructions of an oil and gas complex. The review of means of fire protection of new type - the constructive bent fire protection which advantage is the set of positive characteristics as constructive fire protection (a plate, a shell, etc. with dry process of installation), and coverings is submitted (plasters, epoxy structures, etc. with wet process of installation). Domestic experts (LTD Promizol, Moscow) developed the constructive bent fire protection for increase in building constructions of buildings and constructions of an oil and gas complex keeping operational properties in the conditions of the Arctic climate. Means of fire protection represents a grid with 3D - the reinforced structure. The closest analogy are products of the Hapuflam GmbH and FLAMRO companies, but at the moment there are no data on a possibility of use in the conditions of the Arctic region for protection of bearing structures and cable systems.


Fire Safety ◽  
2018 ◽  
pp. 55-62
Author(s):  
O. Yu. Pazen ◽  
S. Ya. Vovk ◽  
O. I. Bashynskyi ◽  
M. Z. Peleshko

The article deals with the current problem of determining the fire resistance of protected steel elements of building structures. Based on the analysis of literary sources, the main methods for increasing the fire resistance of steel structures are considered, as well as the use of fire retardant coatings based on polymetallophenylsiloxane. Analytical studies were conducted to determine the time of fire protection of the coating, compared to unprotected structures. The results show that the limit of fire resistance of protected steel constructions is increased 2-4 times, depending on the thickness of the application.


2021 ◽  
pp. 12-17
Author(s):  
Юрий Николаевич Шебеко ◽  
Алексей Юрьевич Шебеко

Проведен краткий анализ понятий, связанных с расчетом пределов огнестойкости строительных конструкций. Дано определение термина «фактический предел огнестойкости», которое отсутствует в нормативных документах по пожарной безопасности. Отмечено, что это связано с использованием на практике значений пределов огнестойкости, определенных для стандартных температурных режимов пожара, в то время как на практике указанные температурные режимы, как правило, отличаются от стандартных. Предложена концепция определения фактического предела огнестойкости, основанная на моделировании воздействия на строительную конструкцию температурного режима реального пожара (например, с помощью программного комплекса FDS 6). The brief analysis of definitions connected with estimation of fire resistance limits of building structures is conducted. There is given the determination of term “actual fire resistance limit” that is absent in fire safety normative documents. It is caused by practical application of the fire resistance limits determined for standard temperature regimes of fires only, but at the same time the temperature regimes of real fires as a rule differ from the standard regimes. There is proposed the method for determination of the actual fire resistance limit based on the modeling of influence of the real fire temperature regime on buildings structures. This modeling can be made by an application of CFD methods (for example, with the help of FDS 6 software complex). The required reliability of the building structure is considered. The proposed method can solve the problem of practical applicability of certain structural unit during designing buildings and structures, for which the use of the resistance limits obtained for the standard fire temperature regimes can lead to unjustified economic expenditures without an appropriate elevation of fire safety level of the object.


2018 ◽  
Vol 193 ◽  
pp. 03026 ◽  
Author(s):  
Marina Gravit ◽  
Vladimir Lyulikov ◽  
Alina Fatkullina

The review of modern software systems that allow producing modeling and calculation of fire resistance of building structures, as well as simulating fire protection, is given. Particular attention is paid to the software Sofistik, which allows you to synchronize with Autodesk Revit and calculate the fire protection of building structures for various temperature regimes.


Sign in / Sign up

Export Citation Format

Share Document