NEUROENZYMOLOGY. MECHANISM OF ACETYLCHOLINESTERASE FUNCTIONING IN CHOLINERGIC SYNAPSE

Author(s):  
S. Varfolomeev ◽  
V. Bykov

A kinetic model describing the dynamics of synaptic "discharge" taking into account the kinetics of neurotransmitter release into a synaptic cleft, pH-dependence of the enzyme catalytic activity and diffusion proton removal has been proposed and studied.

Author(s):  
Sergey Varfolomeev ◽  
Viktor Bykov ◽  
Svetlana Tsybenova

The kinetic model describing the dynamics of synaptic “discharge” taking into account the kinetics of the injection of the neurotransmitter into the synaptic cleft, the pH-dependence of catalytic activity of the enzyme and diffusion withdrawal of protons is proposed and studied. In the framework of the kinetic model, the functioning of the cholinergic synapse is considered. The results of mathematical modeling of changes in the level of acetylcholine, induced pH impulse, the influence of the frequency of impulse transfer and inhibition of acetylcholinesterase are presented. Physico-chemical explanation for a number of important physiological phenomena, such as neuromuscular paralysis, the molecular mechanism of neurological memory, actions of nerve poisons and toxins and Alzheimer’s disease is given.


2020 ◽  
pp. 127-139
Author(s):  
Sergey Varfolomeev ◽  
Viktor Bykov ◽  
Svetlana Tsybenova

The kinetic model describing the dynamics of synaptic “discharge” taking into account the kinetics of the injection of the neurotransmitter into the synaptic cleft, the pH-dependence of catalytic activity of the enzyme and diffusion withdrawal of protons is proposed and studied. In the framework of the kinetic model, the functioning of the cholinergic synapse is considered. The results of mathematical modeling of changes in the level of acetylcholine, induced pH impulse, the influence of the frequency of impulse transfer and inhibition of acetylcholinesterase are presented. Physico-chemical explanation for a number of important physiological phenomena, such as neuromuscular paralysis, the molecular mechanism of neurological memory, actions of nerve poisons and toxins and Alzheimer’s disease is given.


1986 ◽  
Vol 237 (1) ◽  
pp. 217-227 ◽  
Author(s):  
G W Gould ◽  
J M East ◽  
R J Froud ◽  
J M McWhirter ◽  
H I Stefanova ◽  
...  

The Ca2+ + Mg2+-activated ATPase of sarcoplasmic reticulum exhibits complex kinetics of activation with respect to ATP. ATPase activity is pH-dependent, with similar pH-activity profiles at high and low concentrations of ATP. Low concentrations of Ca2+ in the micromolar range activate the ATPase, whereas activity is inhibited by Ca2+ at millimolar concentrations. The pH-dependence of this Ca2+ inhibition and the effect of the detergent C12E8 (dodecyl octaethylene glycol monoether) on Ca2+ inhibition are similar to those observed on activation by low concentrations of Ca2+. On the basis of these and other studies we present a kinetic model for the ATPase. The ATPase is postulated to exist in one of two conformations: a conformation (E1) of high affinity for Ca2+ and MgATP and a conformation (E2) of low affinity for Ca2+ and MgATP. Ca2+ binding to E2 and to the phosphorylated form E2P are equal. Proton binding at the Ca2+-binding sites in the E1 and E2 conformations explains the pH-dependence of Ca2+ effects. Binding of MgATP to the phosphorylated intermediate E1′PCa2 and to E2 modulate the rates of the transport step E1′PCa-E2′PCa2 and the return of the empty Ca2+ sites to the outside surface of the sarcoplasmic reticulum, as well as the rate of dephosphorylation of E2P. Only a single binding site for MgATP is postulated.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Moritz Armbruster ◽  
Chris G Dulla ◽  
Jeffrey S Diamond

Genetically encoded fluorescent glutamate indicators (iGluSnFRs) enable neurotransmitter release and diffusion to be visualized in intact tissue. Synaptic iGluSnFR signal time courses vary widely depending on experimental conditions, often lasting 10–100 times longer than the extracellular lifetime of synaptically released glutamate estimated with uptake measurements. iGluSnFR signals typically also decay much more slowly than the unbinding kinetics of the indicator. To resolve these discrepancies, here we have modeled synaptic glutamate diffusion, uptake and iGluSnFR activation to identify factors influencing iGluSnFR signal waveforms. Simulations suggested that iGluSnFR competes with transporters to bind synaptically released glutamate, delaying glutamate uptake. Accordingly, synaptic transporter currents recorded from iGluSnFR-expressing astrocytes in mouse cortex were slower than those in control astrocytes. Simulations also suggested that iGluSnFR reduces free glutamate levels in extrasynaptic spaces, likely limiting extrasynaptic receptor activation. iGluSnFR and lower affinity variants, nonetheless, provide linear indications of vesicle release, underscoring their value for optical quantal analysis.


Author(s):  
Moritz Armbruster ◽  
Chris G. Dulla ◽  
Jeffrey S. Diamond

AbstractGenetically encoded fluorescent glutamate indicators (iGluSnFRs) enable neurotransmitter release and diffusion to be visualized in intact tissue. Synaptic iGluSnFR signal time courses vary widely depending on experimental conditions and often last 10-100 times longer than the extracellular lifetime of synaptically released glutamate estimated with uptake measurements. iGluSnFR signals typically also decay much more slowly than the unbinding kinetics of the indicator. To resolve these discrepancies, here we have modeled synaptic glutamate diffusion, uptake and iGluSnFR activation to identify factors influencing iGluSnFR signal waveforms. Simulations suggested that iGluSnFR competes with transporters to bind synaptically released glutamate, delaying glutamate uptake. Accordingly, synaptic transporter currents recorded in iGluSnFR-expressing cortical astrocytes were slower than those in control astrocytes. Simulations also suggested that iGluSnFR reduces free glutamate levels in extrasynaptic spaces, likely limiting extrasynaptic receptor activation. iGluSnFR and lower-affinity variants nonetheless provide linear indications of vesicle release, underscoring their value for optical quantal analysis.


1980 ◽  
Vol 45 (3) ◽  
pp. 783-790 ◽  
Author(s):  
Petr Taras ◽  
Milan Pospíšil

Catalytic activity of nickel-molybdenum catalysts for methanation of carbon monoxide and hydrogen was studied by means of differential scanning calorimetry. The activity of NiMoOx systems exceeds that of carrier-free nickel if x < 2, and is conditioned by the oxidation degree of molybdenum, changing in dependence on the composition in the region Mo-MoO2. The activity of the catalysts is adversely affected by irradiation by fast neutrons, dose 28.1 Gy, or by γ rays using doses in the region 0.8-52 kGy. The system is most susceptible to irradiation in the region of low concentrations of the minor component (about 1 mol.%). The dependence of changes in catalytic activity of γ-irradiated samples on the dose exhibits a maximum in the range of 2-5 kGy. The changes in catalytic activity are stimulated by the change of reactivity of the starting mixed oxides, leading to different kinetics of their reduction and modification of their adsorption properties. The irradiation of the catalysts results in lowered concentration of the active centres for the methanation reaction.


1980 ◽  
Vol 45 (8) ◽  
pp. 2219-2223 ◽  
Author(s):  
Marie Jakoubková ◽  
Martin Čapka

Kinetics of homogenous hydrogenation of 1-heptene catalysed by rhodium(I) complexes prepared in situ from μ,μ'-dichloro-bis(cyclooctenerhodium) and phosphines of the type RP(C6H5)2 (R = -CH3, -(CH2)nSi(CH3)3; n = 1-4) have been studied. The substitution of the ligands by the trimethylsilyl group was found to increase significantly the catalytic activity of the complexes. The results are discussed in relation to the electron density on the phosphorus atom determined by 31P NMR spectroscopy and to its proton acceptor ability determined by IR spectroscopy.


1981 ◽  
Vol 46 (7) ◽  
pp. 1577-1587 ◽  
Author(s):  
Karel Jeřábek

Catalytic activity of ion exchangers prepared by partial sulphonation of styrene-divinylbenzene copolymers in reesterifications of ethyl acetate by methanol and propanol, hydrolysis of ethyl acetate and in synthesis of bisphenol A has been compared with data on polymer structure of these catalysts and with distribution of the crosslinking agent, divinylbenzene, calculated from literature data on kinetics of copolymerisation of styrene with divinylbenzene. It was found that the polymer structure of ion exchangers influences catalytic activity predominantly by changing the local concentration of acid active sites. The results obtained indicated that the effect of transport phenomena on the rate of catalytic reactions does not depend on the degree of swelling of the ion exchangers in reaction medium but it is mainly dependent on the relative affinity of reaction components to the acid groups or to the polymer skeleton.


1991 ◽  
Vol 56 (10) ◽  
pp. 2020-2029
Author(s):  
Jindřich Leitner ◽  
Petr Voňka ◽  
Josef Stejskal ◽  
Přemysl Klíma ◽  
Rudolf Hladina

The authors proposed and treated quantitatively a kinetic model for deposition of epitaxial GaAs layers prepared by reaction of trimethylgallium with arsine in hydrogen atmosphere. The transport of gallium to the surface of the substrate is considered as the controlling process. The influence of the rate of chemical reactions in the gas phase and on the substrate surface on the kinetics of the deposition process is neglected. The calculated dependence of the growth rate of the layers on the conditions of the deposition is in a good agreement with experimental data in the temperature range from 600 to 800°C.


Sign in / Sign up

Export Citation Format

Share Document