scholarly journals Effects of fluorescent glutamate indicators on neurotransmitter diffusion and uptake

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Moritz Armbruster ◽  
Chris G Dulla ◽  
Jeffrey S Diamond

Genetically encoded fluorescent glutamate indicators (iGluSnFRs) enable neurotransmitter release and diffusion to be visualized in intact tissue. Synaptic iGluSnFR signal time courses vary widely depending on experimental conditions, often lasting 10–100 times longer than the extracellular lifetime of synaptically released glutamate estimated with uptake measurements. iGluSnFR signals typically also decay much more slowly than the unbinding kinetics of the indicator. To resolve these discrepancies, here we have modeled synaptic glutamate diffusion, uptake and iGluSnFR activation to identify factors influencing iGluSnFR signal waveforms. Simulations suggested that iGluSnFR competes with transporters to bind synaptically released glutamate, delaying glutamate uptake. Accordingly, synaptic transporter currents recorded from iGluSnFR-expressing astrocytes in mouse cortex were slower than those in control astrocytes. Simulations also suggested that iGluSnFR reduces free glutamate levels in extrasynaptic spaces, likely limiting extrasynaptic receptor activation. iGluSnFR and lower affinity variants, nonetheless, provide linear indications of vesicle release, underscoring their value for optical quantal analysis.

Author(s):  
Moritz Armbruster ◽  
Chris G. Dulla ◽  
Jeffrey S. Diamond

AbstractGenetically encoded fluorescent glutamate indicators (iGluSnFRs) enable neurotransmitter release and diffusion to be visualized in intact tissue. Synaptic iGluSnFR signal time courses vary widely depending on experimental conditions and often last 10-100 times longer than the extracellular lifetime of synaptically released glutamate estimated with uptake measurements. iGluSnFR signals typically also decay much more slowly than the unbinding kinetics of the indicator. To resolve these discrepancies, here we have modeled synaptic glutamate diffusion, uptake and iGluSnFR activation to identify factors influencing iGluSnFR signal waveforms. Simulations suggested that iGluSnFR competes with transporters to bind synaptically released glutamate, delaying glutamate uptake. Accordingly, synaptic transporter currents recorded in iGluSnFR-expressing cortical astrocytes were slower than those in control astrocytes. Simulations also suggested that iGluSnFR reduces free glutamate levels in extrasynaptic spaces, likely limiting extrasynaptic receptor activation. iGluSnFR and lower-affinity variants nonetheless provide linear indications of vesicle release, underscoring their value for optical quantal analysis.


Author(s):  
S. Varfolomeev ◽  
V. Bykov

A kinetic model describing the dynamics of synaptic "discharge" taking into account the kinetics of neurotransmitter release into a synaptic cleft, pH-dependence of the enzyme catalytic activity and diffusion proton removal has been proposed and studied.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Klaiani B. Fontana ◽  
Giane Gonçalves Lenzi ◽  
Erica R. L. R. Watanabe ◽  
Ervin Kaminski Lenzi ◽  
Juliana A. M. T. Pietrobelli ◽  
...  

The removal of Pb(II) from water by biosorption processes onto malt bagasse was investigated and the kinetic and thermodynamic parameters were obtained; additionally a diffusion modeling was proposed. The characterization of malt bagasse was performed by FTIR and SEM/EDS. The experiments were conducted in batch system and an experimental design based response surface methodology was applied for agitation speed and pH optimization. The kinetics of biosorption followed pseudo-second-order model and the temperature of the process affected the biosorption capacity. Isotherm models of Langmuir, Freundlich, and Elovich were applied and the Langmuir model showed better fit and the estimated biosorption capacity was 29.1 mg g−1. The negative values obtained for ΔG° and positive values of ΔH° confirm, respectively, the spontaneous and endothermic nature of the process. The diffusion modeling was performed based on experiments in the absence of agitation to investigate the influence of the biosorbent on the sorption process of Pb(II) ions.


Author(s):  
Dimitra Flouri ◽  
Daniel Lesnic ◽  
Constantina Chrysochou ◽  
Jehill Parikh ◽  
Peter Thelwall ◽  
...  

Abstract Introduction Model-driven registration (MDR) is a general approach to remove patient motion in quantitative imaging. In this study, we investigate whether MDR can effectively correct the motion in free-breathing MR renography (MRR). Materials and methods MDR was generalised to linear tracer-kinetic models and implemented using 2D or 3D free-form deformations (FFD) with multi-resolution and gradient descent optimization. MDR was evaluated using a kidney-mimicking digital reference object (DRO) and free-breathing patient data acquired at high temporal resolution in multi-slice 2D (5 patients) and 3D acquisitions (8 patients). Registration accuracy was assessed using comparison to ground truth DRO, calculating the Hausdorff distance (HD) between ground truth masks with segmentations and visual evaluation of dynamic images, signal-time courses and parametric maps (all data). Results DRO data showed that the bias and precision of parameter maps after MDR are indistinguishable from motion-free data. MDR led to reduction in HD (HDunregistered = 9.98 ± 9.76, HDregistered = 1.63 ± 0.49). Visual inspection showed that MDR effectively removed motion effects in the dynamic data, leading to a clear improvement in anatomical delineation on parametric maps and a reduction in motion-induced oscillations on signal-time courses. Discussion MDR provides effective motion correction of MRR in synthetic and patient data. Future work is needed to compare the performance against other more established methods.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1003
Author(s):  
Michiaki Matsumoto ◽  
Tadashi Hano

The non-enzymatic synthesis of N-benzyloxycarbonyl-L-phenylalanyl-L-leucine (Cbz-Phe-Leu) from lipophilic N-benzyloxycarbonyl-L-phenylalanine (Cbz-Phe) and hydrophilic L-leucine (Leu), by N, N’-dicyclohexylcarbodiimide (DCC) as a condensing agent, was carried out using a reversed micellar system composed of bis(2-ethylhexyl) sodium sulfosuccinate (AOT) as a surfactant and isooctane. We successfully synthesized Cbz-Phe-Leu in a short time and investigated the effects of its operational conditions, the DCC concentration, w0, and the pH on the kinetic parameters and the maximum yields. For dipeptide synthesis, we had to add an excess of DCC with the substrates because of the side reactions of Cbz-Phe. From the pH dependency of the reactivity, a partially cationic form of Leu was better for a synthesis reaction because of the enrichment of Leu at the interface by anionic AOT. The optimum water content on the dipeptide synthesis was w0 = 28 due to the competition of the peptide synthesis and the side reactions. The maximum yield of Cbz-Phe-Leu was 0.565 at 80 h under optimum experimental conditions.


1976 ◽  
Vol 49 (4) ◽  
pp. 937-959 ◽  
Author(s):  
S. Cesca ◽  
M. Bruzzone ◽  
A. Priola ◽  
G. Ferraris ◽  
P. Giusti

Abstract New catalyst systems based on alkylaluminum derivatives and halogen or interhalogen compounds were found highly efficient in the synthesis of high-molecular-weight IIR at temperatures above − 50°C. The reaction mechanism was studied in detail for the system Et2AlCl + Cl2. The reactions occurring between chlorine, isobutene, Et2AlCl, and the solvent (CH3Cl) were elucidated and studied under various experimental conditions (e.g. presence or absence of light, simultaneous presence of the copolymerization system components, temperature, type of halogen, use of model compound of isobutene). It was concluded that halogenium ions, i.e. Cl+, Br+, or I+, are the initiating species. Kinetic and conductometric investigations showed that scarcely dissociated ion pairs, e.g. Cl+[Et2AlCl2]−, were formed in the absence of monomer; but in the presence of isobutene, a noticeable increase of the electrical conductivity and rapid polymerization occurred. The maximum polymerization rate was first order with respect to the concentrations of monomer, Cl2, and Et2AlCl. In the homopolymerization of isobutene, transfer to monomer and termination reactions were negligible. The MW of IIR was found to be mainly dependent on the concentrations of the catalyst components, on isoprene concentration, and on temperature. The reactivity ratio of isobutene with isoprene was found to be r1=2.5±0.5 at −35°C, while the activation energies relative to MW were −5.8 ± 0.4, kcal/mol for polyisobutene, and −5.7 ± 0.7 and − 4.3 ± 0.5 kcal/mol for IIR containing, respectively, 1.3 and 1.9 mol% of isoprene. The evaluation of some physicochemical and technological properties of typical IIR produced with the system Et2AlCl + Cl2, indicated that isoprene is randomly distributed along the chains and that the MWD is monomodal, while the glass transition temperature, tensile properties, mechanical-dynamic spectra, and kinetics of vulcanization are very similar to those of commercial IIR. Very preliminary data, referring to several classes of new catalyst systems yielding IIR having good properties, were also obtained. The syncatalyst systems here described can work in a homogeneous phase consisting of an aliphatic hydrocarbon besides methyl chloride, still giving IIR with high MW. Therefore, a completely homogeneous process can be envisioned for the synthesis of IIR at −50°C thus avoiding a great part of the fouling problems of the slurry process. The economic advantage of using “high” temperatures of polymerization is briefly discussed in terms of energy savings.


2021 ◽  
Vol 29 ◽  
pp. 95-115
Author(s):  
Rafal Kozubski ◽  
Graeme E. Murch ◽  
Irina V. Belova

We review the results of our Monte Carlo simulation studies carried out within the past two decades in the area of atomic-migration-controlled phenomena in intermetallic compounds. The review aims at showing the high potential of Monte Carlo methods in modelling both the equilibrium states of the systems and the kinetics of the running processes. We focus on three particular problems: (i) the atomistic origin of the complexity of the ‘order-order’ relaxations in γ’-Ni3Al; (ii) surface-induced ordering phenomena in γ-FePt and (iii) ‘order—order’ kinetics and self-diffusion in the ‘triple-defect’ β-NiAl. The latter investigation demonstrated how diverse Monte Carlo techniques may be used to model the phenomena where equilibrium thermodynamics interplays and competes with kinetic effects.


1985 ◽  
Vol 248 (2) ◽  
pp. R147-R156 ◽  
Author(s):  
D. G. Covell ◽  
P. K. Narang ◽  
D. G. Poplack

The antipurine 6-mercaptopurine (6-MP) is effective in the induction and maintenance of remission in patients with acute lymphocytic leukemia. This report presents a compartmental model that describes the kinetics of 6-MP in the plasma and cerebrospinal fluid (CSF) of the monkey. Analysis is based on simultaneously measured plasma and CSF 6-MP concentrations after intravenous and intraventricular bolus administration. Results indicate that 6-MP administered intraventricularly remains largely in the CSF. Disappearance of 6-MP from CSF is principally due to convective losses at a rate equivalent to CSF turnover. Diffusion of 6-MP across the ependymal surface accounts for only 7% of the 6-MP appearing in the plasma. Conversely the dominant route for entry of 6-MP into the CSF from the plasma is entrainment in choroidally formed CSF. Only 12% of 6-MP in the CSF after intravenous administration can be accounted for by permeation of cerebral capillaries and diffusion through brain parenchyma and across the ependymal surface into CSF. These results indicate that the choroid plexus is not a significant barrier for the transfer of molecules like 6-MP from plasma to CSF.


Sign in / Sign up

Export Citation Format

Share Document