scholarly journals Fixed Target Serial Data Collection at Diamond Light Source

Author(s):  
Sam Horrell ◽  
Danny Axford ◽  
Nicholas E. Devenish ◽  
Ali Ebrahim ◽  
Michael A. Hough ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ki Hyun Nam ◽  
Jihan Kim ◽  
Yunje Cho

AbstractThe serial crystallography (SX) technique enables the determination of the room-temperature structure of a macromolecule while causing minimal radiation damage, as well as the visualization of the molecular dynamics by time-resolved studies. The fixed-target (FT) scanning approach is one method for SX sample delivery that minimizes sample consumption and minimizes physical damage to crystals during data collection. Settling of the crystals on the sample holder in random orientation is important for complete three dimensional data collection. To increase the random orientation of crystals on the sample holder, we developed a polyimide mesh-based sample holder with irregular crystal mounting holes for FT-SX. The polyimide mesh was fabricated using a picosecond laser. Each hole in the polyimide mesh has irregularly shaped holes because of laser thermal damage, which may cause more crystals to settle at random orientations compared to regular shaped sample holders. A crystal sample was spread onto a polyimide-mesh, and a polyimide film was added to both sides to prevent dehydration. Using this sample holder, FT-SX was performed at synchrotron and determined the room-temperature lysozyme structure at 1.65 Å. The polyimide mesh with irregularly shaped holes will allow for expanded applications in sample delivery for FT-SX experiments.


2021 ◽  
Vol 77 (5) ◽  
pp. 628-644
Author(s):  
Gabrielle Illava ◽  
Richard Jayne ◽  
Aaron D. Finke ◽  
David Closs ◽  
Wenjie Zeng ◽  
...  

Serial synchrotron crystallography (SSX) is enabling the efficient use of small crystals for structure–function studies of biomolecules and for drug discovery. An integrated SSX system has been developed comprising ultralow background-scatter sample holders suitable for room and cryogenic temperature crystallographic data collection, a sample-loading station and a humid `gloveless' glovebox. The sample holders incorporate thin-film supports with a variety of designs optimized for different crystal-loading challenges. These holders facilitate the dispersion of crystals and the removal of excess liquid, can be cooled at extremely high rates, generate little background scatter, allow data collection over >90° of oscillation without obstruction or the risk of generating saturating Bragg peaks, are compatible with existing infrastructure for high-throughput cryocrystallography and are reusable. The sample-loading station allows sample preparation and loading onto the support film, the application of time-varying suction for optimal removal of excess liquid, crystal repositioning and cryoprotection, and the application of sealing films for room-temperature data collection, all in a controlled-humidity environment. The humid glovebox allows microscope observation of the sample-loading station and crystallization trays while maintaining near-saturating humidities that further minimize the risks of sample dehydration and damage, and maximize working times. This integrated system addresses common problems in obtaining properly dispersed, properly hydrated and isomorphous microcrystals for fixed-orientation and oscillation data collection. Its ease of use, flexibility and optimized performance make it attractive not just for SSX but also for single-crystal and few-crystal data collection. Fundamental concepts that are important in achieving desired crystal distributions on a sample holder via time-varying suction-induced liquid flows are also discussed.


2011 ◽  
Vol 18 (4) ◽  
pp. 595-600 ◽  
Author(s):  
Anuschka Pauluhn ◽  
Claude Pradervand ◽  
Daniel Rossetti ◽  
Marco Salathe ◽  
Clemens Schulze-Briese

Automatic loop centring has been developed as part of the automation process in crystallographic data collection at the Swiss Light Source. The procedure described here consists of an optional set-up part, in which the background images are taken, and the actual centring part. The algorithm uses boundary and centre-of-mass detection at two different microscope image magnifications. Micromounts can be handled as well. Centring of the loops can be achieved in 15–26 s, depending on their initial position, and as fast as manual centring. The alignment of the sample is carried out by means of a new flexural-hinge-based compact goniometer head. The device features an electromagnet for robotic wet mounting of samples. The circle of confusion was measured to be smaller than 1 µm (r.m.s.); its bidirectional backlash is below 2 µm.


2013 ◽  
Vol 46 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Scott Classen ◽  
Greg L. Hura ◽  
James M. Holton ◽  
Robert P. Rambo ◽  
Ivan Rodic ◽  
...  

The SIBYLS beamline (12.3.1) of the Advanced Light Source at Lawrence Berkeley National Laboratory, supported by the US Department of Energy and the National Institutes of Health, is optimized for both small-angle X-ray scattering (SAXS) and macromolecular crystallography (MX), making it unique among the world's mostly SAXS or MX dedicated beamlines. Since SIBYLS was commissioned, assessments of the limitations and advantages of a combined SAXS and MX beamline have suggested new strategies for integration and optimal data collection methods and have led to additional hardware and software enhancements. Features described include a dual mode monochromator [containing both Si(111) crystals and Mo/B4C multilayer elements], rapid beamline optics conversion between SAXS and MX modes, active beam stabilization, sample-loading robotics, and mail-in and remote data collection. These features allow users to gain valuable insights from both dynamic solution scattering and high-resolution atomic diffraction experiments performed at a single synchrotron beamline. Key practical issues considered for data collection and analysis include radiation damage, structural ensembles, alternative conformers and flexibility. SIBYLS develops and applies efficient combined MX and SAXS methods that deliver high-impact results by providing robust cost-effective routes to connect structures to biology and by performing experiments that aid beamline designs for next generation light sources.


1998 ◽  
Vol 524 ◽  
Author(s):  
J. G. Tobina ◽  
P. J. Bedrossiana ◽  
T. R. Cumminsb ◽  
G. D. Waddillb ◽  
S. Mishrac ◽  
...  

ABSTRACTThe first preliminary results from a novel spectrometer for elementally-specific measurements of magnetic surfaces and ultrathin films are presented here. The key measurements are based upon spin-resolving and photon-dichroic photoelectron spectroscopy. True spinresolution is achieved by the use of a Mini-Mott detection scheme. The photon-dichroic measurements include the variant magnetic x-ray linear dichroism (MXLD). Both a multi-channel, energy dispersive collection scheme as well as the spin-detecting Mini-Mott apparatus are used in data collection. The [Spin Spectrometer] is based at the Spectromicroscopy Facility (Beamline7)at the Advanced Light Source.


IUCrJ ◽  
2020 ◽  
Vol 7 (6) ◽  
pp. 1131-1141
Author(s):  
Isabelle Martiel ◽  
Chia-Ying Huang ◽  
Pablo Villanueva-Perez ◽  
Ezequiel Panepucci ◽  
Shibom Basu ◽  
...  

Serial protein crystallography has emerged as a powerful method of data collection on small crystals from challenging targets, such as membrane proteins. Multiple microcrystals need to be located on large and often flat mounts while exposing them to an X-ray dose that is as low as possible. A crystal-prelocation method is demonstrated here using low-dose 2D full-field propagation-based X-ray phase-contrast imaging at the X-ray imaging beamline TOMCAT at the Swiss Light Source (SLS). This imaging step provides microcrystal coordinates for automated serial data collection at a microfocus macromolecular crystallography beamline on samples with an essentially flat geometry. This prelocation method was applied to microcrystals of a soluble protein and a membrane protein, grown in a commonly used double-sandwich in situ crystallization plate. The inner sandwiches of thin plastic film enclosing the microcrystals in lipid cubic phase were flash cooled and imaged at TOMCAT. Based on the obtained crystal coordinates, both still and rotation wedge serial data were collected automatically at the SLS PXI beamline, yielding in both cases a high indexing rate. This workflow can be easily implemented at many synchrotron facilities using existing equipment, or potentially integrated as an online technique in the next-generation macromolecular crystallography beamline, and thus benefit a number of dose-sensitive challenging protein targets.


2014 ◽  
Vol 70 (a1) ◽  
pp. C794-C794
Author(s):  
Jay Nix ◽  
Robert Daly

The Molecular Biology Consortium Beamline 4.2.2 at the Advanced Light Source has recently installed a new, high-speed, large surface-area CMOS detector for macromolecular crystallography by funds from NIH grant S10OD012073. The detector is 25 x 28 cm and has a readout speed greater than 25 frames per second. This allows shutterless operations and the collection of fine-sliced data. Presented is a description of the hardware and software integration of the detector into the controls system, and the implementation of a streamlined and intuitive collection interface. The interface is implemented in TCL/TK for integration into the beamline's custom Blu-Ice/EPICS environment and remote operations of the beamline with the new detector are routine. The increased sensitivity of the detector and shutterless operations allow for shorter exposure times per image, and up to 3X decrease in time per dataset. Optimum data collection and processing strategies to maximize the benefits of shutterless operations are discussed.


Sign in / Sign up

Export Citation Format

Share Document