scholarly journals Finite Difference Solution for MHD Flow Between Two Parallel Permeable Plates with Velocity Slip

Author(s):  
Nagaraj N Katagi ◽  
Ashwini Bhat

The problem of Hydromagnetic steady laminar flow of an electrically conducting viscous incompressible fluid between parallel pates has been studied. The nonzero tangential slip velocity at the permeable boundary is considered. A numerical solution is derived for the governing nonlinear boundary value problem using a novel Keller box scheme. The effect of suction Reynold number , Hartman number and slip coefficient on derived quantities such as velocity filed and skin friction at the boundaries are analyzed. The physical significance of the flow parameters is also discussed.

2011 ◽  
Vol 2011 ◽  
pp. 1-17 ◽  
Author(s):  
S. S. Nourazar ◽  
M. Habibi Matin ◽  
M. Simiari

The nonlinear two-dimensional forced-convection boundary-layer magneto hydrodynamic (MHD) incompressible flow of nanofluid over a horizontal stretching flat plate with variable magnetic field including the viscous dissipation effect is solved using the homotopy perturbation method (HPM). In the present work, our results of the HPM are compared with the results of simulation using the finite difference method, Keller's box-scheme. The comparisons of the results show that the HPM has the capability of solving the nonlinear boundary layer MHD flow of nanofluid with sufficient accuracy.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Tarek M. A. El-Mistikawy

The traditionally ignored physical processes of viscous dissipation, Joule heating, streamwise heat diffusion, and work shear are assessed and their importance is established. The study is performed for the MHD flow due to a linearly stretching sheet with induced magnetic field. Cases of prescribed surface temperature, heat flux, surface feed (injection or suction), velocity slip, and thermal slip are considered. Sample numerical solutions are obtained for the chosen combinations of the flow parameters.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tarek N. Abdelhameed

AbstractThis article examines the entropy generation in the magnetohydrodynamics (MHD) flow of Newtonian fluid (water) under the effect of applied magnetic in the absence of an induced magnetic field. More precisely, the flow of water is considered past an accelerated plate such that the fluid is receiving constant heating from the initial plate. The fluid disturbance away from the plate is negligible, therefore, the domain of flow is considered as semi-infinite. The flow and heat transfer problem is considered in terms of differential equations with physical conditions and then the corresponding equations for entropy generation and Bejan number are developed. The problem is solved for exact solutions using the Laplace transform and finite difference methods. Results are displayed in graphs and tables and discussed for embedded flow parameters. Results showed that the magnetic field has a strong influence on water flow, entropy generation, and Bejan number.


Author(s):  
D. R. V. Prasada Rao ◽  
D. V. Krishna ◽  
Lokenath Debnath

This paper gives a steady linear theory of the combined effect of the free and forced convection in rotating hydromagnetic viscous fluid flows in a porous channel under the action of a uniform magnetic field. The flow is governed by the Grashof numberG, the Hartmann numberH, the Ekman numberE, and the suction Reynolds numberS. The solutions for the velocity field, temperature distribution, magnetic field, mass rate of flow and the shear stresses on the channel boundaries are obtained using a perturbation method with the small parameterS. The nature of the associated boundary layers is investigated for various values of the governing flow parameters. The velocity, the temperature, and the shear stresses are discussed numerically by drawing profiles with reference to the variations in the flow parameters.


2009 ◽  
Vol 13 (1) ◽  
pp. 5-12 ◽  
Author(s):  
Pushkar Sharma ◽  
Gurminder Singh

Aim of the paper is to investigate effects of ohmic heating and viscous dissipation on steady flow of a viscous incompressible electrically conducting fluid in the presence of uniform transverse magnetic field and variable free stream near a stagnation point on a stretching non-conducting isothermal sheet. The governing equations of continuity, momentum, and energy are transformed into ordinary differential equations and solved numerically using Runge-Kutta fourth order with shooting technique. The velocity and temperature distributions are discussed numerically and presented through graphs. Skin-friction coefficient and the Nusselt number at the sheet are derived, discussed numerically, and their numerical values for various values of physical parameters are compared with earlier results and presented through tables.


2020 ◽  
Vol 7 ◽  

This paper studies the effects of Hall and ion slip on two dimensional incompressible flow and heat transfer of an electrically conducting viscous fluid in a porous medium between two parallel plates, generated due to periodic suction and injection at the plates. The flow field, temperature and pressure are assumed to be periodic functions in ti e ω and the plates are kept at different but constant temperatures. A numerical solution for the governing nonlinear ordinary differential equations is obtained using quasilinearization method. The graphs for velocity, temperature distribution and skin friction are presented for different values of the fluid and geometric parameters.


Author(s):  
Hunida Malaikah ◽  
M. Ijaz Khan

The flow of non-Newtonian liquids and their heat transfer characteristic gained more importance due to their technological, industrial and in many engineering applications. Inspired by these applications, the magnetohydrodynamic (MHD) flow of non-Newtonian liquid characterized by a power-law model is scrutinized. Further, viscous dissipation, Marangoni convection and thermal radiation are taken into the account. In addition, the production of entropy is investigated as a function of temperature, velocity and concentration. For different flow parameters, the total entropy production (EP) rate is examined. The appropriate similarity transformations are used to reduce the modeled equations reduced into ordinary differential equations (ODEs). The Runge–Kutta–Fehlberg 45-order procedure is then used to solve these reduced equations numerically using the shooting technique. Results reveal that the escalating values of radiation parameter escalate the heat transference, but the contrary trend is portrayed for escalating values of power-law index. The augmented values of thermal Marangoni number decline the heat transference. The gain in values of radiation parameter progresses the entropy generation.


2020 ◽  
Vol 34 (21) ◽  
pp. 2050214
Author(s):  
M. Ijaz Khan ◽  
M. U. Hafeez ◽  
T. Hayat ◽  
A. Alsaedi

The current work examines the MHD convective stagnation point flow of nanofluid over a stretched surface. A uniform magnetic field is applied in a transverse direction. Darcy–Forchheimer’s relation is accounted to demonstrate the flow nature in a permeable medium. Cattaneo–Christov heat and mass flux expressions are incorporated in the modeling. Velocity slip conditions are taken. The non-dimensional velocity, temperature and concentration field are analyzed via pertinent flow parameters like permeability parameter, Buoyancy or mixed convection variable, magnetic parameter, Prandtl number and surface thickness parameter. Results are tabulated for the surface drag force. The Homotopic technique is utilized for the series solution of differential system.


Sign in / Sign up

Export Citation Format

Share Document