scholarly journals Numerical and Experimental Modelling of Small Hydropower Turbine

Author(s):  
Omar Sulaiman Abdullah ◽  
Ammar Hatem Kamel ◽  
Wissam Hashim Khalil

Recently, Archimedes screw turbines have been developed to operate as small hydropower stations, because of its reliability to operate with the low head( less than 5 m) and its low cost of design and operation. In the present study, the influence of the flow rate, shaft inclination angle, and the number of blades is studied using physical model and numerical model to determine the performance of Archimedes screw turbine at Ramadi Barrages in Iraq. The physical model was made of stainless steel with the following parameters: (the radius ratio is 0.536, the pitch is 70 mm, the shaft angles are 30? ,35? ,40? ,45?). The experimental work on the physical model is achieved with different flow rates and angles .The results showing that the highest efficiency is 81.4 % At the angle of 35? and the flow rate is 1.12 l/s . The maximum energy obtained is 25.13 w at the angle of 45?, the e flow rate is 2.065 l/s, and the efficiency was 72%. Also the results show that the increase in the number of blades increases the torque and efficiency of the turbine.

Author(s):  
K Karthikeyan ◽  
L Sujatha

AbstractThis paper deals with design, simulation, fabrication, analysis of mixing efficiency and thin film bonding stability of the micromixer devices with different flow rates used for lab on chip applications. The objective of the present study is to achieve complete mixing with low flow rate and less pressure drop in low cost polymer microfluidic devices. This paper emphasis the design, simulation and fabrication of straight channel micromixer, serpentine channel micromixer with and without quadrant shaped grooves to study the mixing behavior by the effect of structural dimensions of the microfluidic channel at different flow rates. The designed micromixers were tested with varying rates of flow such as 1, 10, 25, 50, 75 and 100 µL/min.


1994 ◽  
Vol 37 (4) ◽  
pp. 28-31
Author(s):  
Hwa-Chi Wang ◽  
Govind Doddi ◽  
Stephen Chesters

Tubing lifetime in HCI service, defined as the time to begin particle shedding due to corrosion, can be estimated by the method described in this paper. This could provide an additional selection criterion for materials used in corrosive applications. In this method, particle shedding by a length of electropolished stainless steel (EPSS) tubing is measured before and after its controlled exposure to 100 percent HCl. The shedding is measured in dry nitrogen at several different flow rates. The experimental variables are moisture concentration, exposure duration, and shedding flow rates. A dosage-response model is used to correlate the particle data with a combined dosage parameter of moisture concentration and exposure duration. The time for the tube to begin to act as a particle source under HCl exposure is then estimated as follows. For a given allowable particle level C, at a specified flow rate, the dosage parameter X can be determined from C = exp (a+bX) where a and b are constants obtainable from the experimental correlation. Once the dosage parameter X is obtained, the lifetime of the EPSS tubing in HCl service can be estimated from {H2O in ppm} x {Lifetime in days} = X For EPSS tubing exposed to 100 percent HCl with I ppm moisture concentration, this method estimates 2.3 yr for this tubing to shed particles greater than 10 particles/scf at a 3.531 scfm (100 slm) flow rate. This estimate is in line with field experience.


2018 ◽  
Vol 204 ◽  
pp. 04003
Author(s):  
Dan Mugisidi ◽  
Oktarina Heriyani ◽  
Rizal Andi Luhung ◽  
Moh. Ramdani Dwi Andrian

Utilization of low head flow water has long been used to generate power by using water wheels and low head turbines. Dethridge wheel which is usually used as a tool to measure the flow of water has also been studied its potential to become hydro power generation. Therefore, this study aims to compare performance between overshot Dethridge wheel and undershot Dethridge wheel. For this purpose, a small scale channel for the operation of a water wheel is equipped with a digital flow meter, a pump that has a debit of up to 25 l/s, a pony brake for a torque meter, and an inverter to adjust the flow rate by changing the pump rotation. The research was conducted at Laboratory of Mechanical Engineering, UHAMKA in Jakarta, Indonesia. Flow rates vary from 5 to 11 l/s with head of 10 cm and 537 cm. The efficiency of undershot and overshot, at the peak, are 21% and 18%, respectively.


2017 ◽  
Author(s):  
David Skelding ◽  
Sam Hart ◽  
Thejas Vidyasagar ◽  
Alexander E. Pozhitkov ◽  
Wenying Shou

AbstractMultiplexed milliliter-scale chemostats are useful for measuring cell physiology under various degrees of nutrient limitation and for experimental evolution. In each chemostat, fresh medium containing a growth rate-limiting metabolite is pumped into the culturing chamber at a constant rate, while culture effluent exits at an equal rate. Although such devices have been developed by various labs, key parameters - the accuracy and precision of flow rate and the operational range - are not explicitly characterized. Here we report the development of multiplexed milliliter-scale chemostats where flow rates for eight chambers can be independently controlled to vary within a wide range, corresponding to population doubling times of 3~ 13 hours. Importantly, flow rates are precise and accurate without the use of expensive feedback systems. Among the eight chambers, the maximal coefficient of variation in flow rate is less than 3%, and average flow rates are only slightly below targets,i.e., 3-6% for 13-hour and 0.6-1.0% for 3-hour doubling times. This deficit is largely due to evaporation and should be correctable. We experimentally demonstrate that our device allows accurate and precise quantification of population phenotypes.


2018 ◽  
Vol 14 (1) ◽  
pp. 31-60 ◽  
Author(s):  
M. Y. Guida ◽  
F. E. Laghchioua ◽  
A. Hannioui

This article deals with fast pyrolysis of brown algae, such as Bifurcaria Bifurcata at the range of temperature 300–800 °C in a stainless steel tubular reactor. After a literature review on algae and its importance in renewable sector, a case study was done on pyrolysis of brown algae especially, Bifurcaria Bifurcata. The aim was to experimentally investigate how the temperature, the particle size, the nitrogen flow rate (N2) and the heating rate affect bio-oil, bio-char and gaseous products. These parameters were varied in the ranges of 5–50 °C/min, below 0.2–1 mm and 20–200 mL. min–1, respectively. The maximum bio-oil yield of 41.3wt% was obtained at a pyrolysis temperature of 600 °C, particle size between 0.2–0.5 mm, nitrogen flow rate (N2) of 100 mL. min–1 and heating rate of 5 °C/min. Liquid product obtained under the most suitable and optimal condition was characterized by elemental analysis, 1H-NMR, FT-IR and GC-MS. The analysis of bio-oil showed that bio-oil from Bifurcaria Bifurcata could be a potential source of renewable fuel production and value added chemicals.


Alloy Digest ◽  
2001 ◽  
Vol 50 (1) ◽  

Abstract UNS S41003 is a low-cost utilitarian martensitic stainless steel to be used for highway and other applications. It is used in the tempered condition at several strength levels. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and shear and bend strength It also includes information on forming, heat treating, and joining. Filing Code: SS-815. Producer or source: Bethlehem Lukens Plate.


Alloy Digest ◽  
2020 ◽  
Vol 69 (12) ◽  

Abstract Outokumpu Moda 410L/4003 is a weldable, extra low carbon, Cr-Ni, ferritic stainless steel that is best suited for mildly corrosive environments such as indoors, where the material is either not exposed to contact with water or gets regularly wiped dry, or outdoors, where some discoloration and superficial rusting are acceptable. It is a low-cost alternative to low-carbon non-alloy steels in certain applications. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-1330. Producer or source: Outokumpu Oyj.


Alloy Digest ◽  
1997 ◽  
Vol 46 (5) ◽  

Abstract Duracorr is low-cost, utilitarian 11% Cr stainless steel with more corrosion resistance and life-cycle cost advantages than weathering steels. The steel may be used where a combination of abrasion and corrosion resistance is required. This datasheet provides information on composition, physical properties, microstructure, hardness, tensile properties, and bend strength as well as fracture toughness. It also includes information on corrosion resistance as well as joining. Filing Code: SS-680. Producer or source: Lukens Steel Company.


1988 ◽  
Vol 53 (4) ◽  
pp. 788-806
Author(s):  
Miloslav Hošťálek ◽  
Jiří Výborný ◽  
František Madron

Steady state hydraulic calculation has been described of an extensive pipeline network based on a new graph algorithm for setting up and decomposition of balance equations of the model. The parameters of the model are characteristics of individual sections of the network (pumps, pipes, and heat exchangers with armatures). In case of sections with controlled flow rate (variable characteristic), or sections with measured flow rate, the flow rates are direct inputs. The interactions of the network with the surroundings are accounted for by appropriate sources and sinks of individual nodes. The result of the calculation is the knowledge of all flow rates and pressure losses in the network. Automatic generation of the model equations utilizes an efficient (vector) fixing of the network topology and predominantly logical, not numerical operations based on the graph theory. The calculation proper utilizes a modification of the model by the method of linearization of characteristics, while the properties of the modified set of equations permit further decrease of the requirements on the computer. The described approach is suitable for the solution of practical problems even on lower category personal computers. The calculations are illustrated on an example of a simple network with uncontrolled and controlled flow rates of cooling water while one of the sections of the network is also a gravitational return flow of the cooling water.


Sign in / Sign up

Export Citation Format

Share Document