scholarly journals Polyethylene Terephthalate Waste Utilisation for Production of Low Thermal Conductivity Cement Sand Bricks

Author(s):  
Rafikullah Deraman ◽  
Mohd Nasrun Mohd Nawi ◽  
Mohd Norazam Yasin ◽  
Mohd Hanif Ismail ◽  
Rami Salah Mohd Osman Mohd Ahmed

There is a tremendous increase in plastic waste that negatively impacts the environment due to various industrial activities. Furthermore, plastic waste has non-biodegradable properties that make it hard to reduce its accumulation around the globe. Hence, this study aims to investigate the possibility of incorporating Polyethylene terephthalate (PET) waste as a partial replacement material of sand to improve the thermal insulation properties of cement sand brick by looking at findings of low thermal conductivity value. The study uses a PET plastic bottle that has been cut into small flakes and grind using a granulator machine to produce PET waste granules whose size is not more than 5 mm, similar to the sand size. This waste was added to other raw materials, i.e., cement and sand. The percentages of PET waste vary from 2.5%, 5%, and 7.5% by weight. This study produced two types of samples, i.e., control brick and PET waste cement sand brick. All samples undergo laboratory works involving geotechnical gradation, physical, mechanical, and thermal conductivity testing. Based on the results obtained, the optimum proportion of PET waste replacement in cement sand bricks making is 5% by its having the lowest thermal conductivity value of 0.581 W/mK and meeting the standard requirements of 3.90 MPa > 3.45 MPa (ASTM C129-11 for compressive strength), and 2,146 kg/m3 > 2,000 kg/m3 (ASTM C129-11 for normal weight non-loadbearing brick). Thus, PET plastic bottle waste can be a potential partial sand replacement material in cement sand bricks. Its potential to enhance the thermal conductivity of existing cement sand brick reduces sand consumption, solves plastic waste problems, and promotes a better environmentally-friendly construction industry.

2016 ◽  
Vol 8 (1) ◽  
pp. 31-40 ◽  
Author(s):  
Jurga Šeputytė-Jucikė ◽  
Marijonas Sinica

The main objective of this study is to create a lightweight aggregate concrete (LWAC) with a low thermal conductivity coefficient using expanded glass (EG) aggregate, produced from waste glass or crushed expanded polystyrene waste, obtained by crushing waste packing tare of household appliances. Research related to the effects of the amount of Portland cement (PC) as well as EG aggregates and crushed expanded polystyrene waste on physical (density, thermal conductivity coefficient, water absorption and capillary coefficient) and mechanical (compressive strength) properties of LWAC samples are provided. Insulating LWAC based on a small amount of PC and lightweight EG aggregates and crushed expanded polystyrene waste, with especially low thermal conductivity coefficient values (from 0.070 to 0.098 W/ (m·K)) has been developed. A strong relationship between thermal conductivity coefficient and density of LWAC samples was obtained. The density of LWAC samples depending on the amount of PC ranged between 225 and 335 kg/m3. A partial replacement of EG aggregate by crushed expanded polystyrene waste, results in relative density decrease of LWAC samples. In LWAC samples the increased amount of PC results in increased compressive strength.


Author(s):  
Edgars Kirilovs ◽  
Silvija Kukle ◽  
Dana Beļakova ◽  
Anatolijs Borodiņecs ◽  
Ādolfs Ruciņš ◽  
...  

<p class="R-AbstractKeywords"><span lang="EN-US">Energy and raw material costs, an increase in environmental pollution, greenhouse gas emissions, global warming, depletion of fossil raw materials stimulate to seek and study alternatives to the synthetic fibers and products made of them for full or partial replacement. Renewable raw materials, including natural fiber sources, are the future of storage resources with a variety of positive effects on both the planet ecosystem and the living and working environment, and the energy consumption of delivering the required functionality. One of the most important energy-saving types is to reduce energy consumption in buildings by insulating them.</span></p><p class="R-AbstractKeywords"><span lang="EN-US">For Latvian conditions suitable crops are historically grown flax and hemp. Within the framework of the studies, hemp stems are being used. Hemp compared with flax, are less suffering from diseases and less damaged by pests, so hemp cultivation is practically free from use of chemical pesticides and herbicides reducing the risk to the ecosystem.</span></p><p class="R-AbstractKeywords"><span lang="EN-US">One of the most frequently mentioned industrial hemp raw materials positive qualities are their very wide use, practically all plant parts can be used in production of different products. This work explores the possibilities and technologies within the Latvian grown hemp stems to work into board materials with insulation capability.</span></p><p class="R-AbstractKeywords"><span lang="EN-US">Hemp fibers/shives mix boards can fulfill the main function of insulation materials, i.e., to reduce the transmission of heat, because they have a porous structure and low density. Material thermal insulation properties affect physical and structural properties of compounds. Cost effective particles board samples from chopped hemp stems with three types of adhesives and different thicknesses were produced and their thermal conductivity evaluated. The technologies applied and test results will be discussed in the paper. </span></p>


2016 ◽  
Vol 1 (01) ◽  
pp. 96
Author(s):  
Gati Annisa Hayu

AbstractSelf compacting concrete is a type of concrete that has a good workability, so it can perform compression itself without using any vibrators. Polyethylene Therephthalte (PET) is a waste that is often found in plastic bottle packaging. The existence of these problems urged many researchers to find solutions to reduce this PET plastic waste. The purpose of this study is to utilize PET as subtitution of fine agregate to produce self compacting concrete. Beside of that, this study uses 1% of Viscocrete. The composistion of PET are 0%, 5%, dan 15%. The specimen size is 15 x 30 cm. The testing are fresh concrete test (Sump Test, V-Funnel, dan L-Box) and hard concrete test (Compressive Test at day 21 and 28). The results showed that the best behavior of fresh concrete test shown by 5% of PET. While on hard concrete test, the best behaviour at the age of 28 days demonstrated by PET 5% amounting to 50,348 MPa and PET 15% of 21,214%Keywords: self compacting concrete, compressive strength, PET, SCC, superplasticizer AbstrakBeton Mampat sendiri atau lebih dikenal dengan Self Compacting Concrete adalah jenis beton yang mempunyai workability yang baik sehingga mampu melakukan pemampatan sendiri tanpa perlu menggunakan alat vibrator. Polyethylene Therephthatallate (PET) adalah limbah yang banyak dijumpai pada botol plastik minuman kemasan. Adanya permasalahan tersebut mendesak banyak pihak untuk mencari solusi dalam mengurangi limbah plastik PET ini. Tujuan dari penelitian ini adalah untuk memanfaatkan PET sebagai pengganti agregat halus untuk menghasilkan beton mampat sendiri. Selain itu juga digunakan Viscocrete sebesar 1%. Komposisi PET yang digunakan adalah 0%, 5%, dan 15%. Ukuran benda uji adalah silinder ukuran 15 x 30 cm. Pengujian berupa pengujian beton segar (Sump Test, V-Funnel, dan L-Box) dan beton keras (Tes Tekan hari ke-21 dan 28). Hasil menunjukkan bahwa dalam pegetesan beton segar perilaku palig baik ditunjukkan oleh beton mampat sendiri dengan komposisi PET sebesar 5%. Sedangkan pada tes beton keras, perilaku terbaik pada usia 28 hari ditunjukkan oleh PET 5% sebesar 50,348 MPa dan PET 15% sebesar 21,214%.Kata kunci: beton mampat sendiri, kuat tekan, PET, SCC, superplasticizer


2012 ◽  
Vol 476-478 ◽  
pp. 932-935 ◽  
Author(s):  
Xiao Yi Han ◽  
Xin Xing ◽  
Hai Feng Cheng ◽  
Jun Wang

Generally, high thermal conductivity of SiC ceramics is required. However, in some circumstances, low thermal conductivity SiC is also needed, for example, for good thermoelectricity or heat insulation. In this work, the product of pyrolysis of polycarbosilane (PCS) is chosen as raw materials. The microwave sintering process was applied to obtain low thermal conductivity at a relatively low sintering temperature. The microwave sintering processes were performed at 1200 °C under Ar atmosphere with dwelling time of 10, 20 and 30 min. The morphology and phases were analyzed by electric microscopy and X-ray diffraction (XRD), respectively. The thermal diffusivities, specific heat and thermal conductivities were measured by laser-flashed method using a thermal analyzer. The thermal conductivity of samples is within the range from 0.81 to 1.37 W/m•K. The sample with dwelling time of 30 min shows potential for multiple applications, due to its good crystallization in XRD spectra and relatively low thermal conductivity in the considered temperature range. The results also suggest a phase transformation at a dwelling time near 20 min that may have occurred.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1139
Author(s):  
Taiwo O. Omosebi ◽  
Noor Faisal Abass

Background: Plastic waste (PW) is becoming increasingly hazardous to the environment as a result of its massive production, causing significant damage to both the ecosystem and its inhabitants. Managing plastic waste is a global concern due to its non-biodegradable nature. However, it is important to handle PWs properly to curtail the environmental emissions associated with their incineration and dumping into landfills. This research investigates the possibility of producing tiles from polyethylene terephthalate (PET) waste bottles and fly ash. The mechanical properties, as well as the chemical resistance of the manufactured PET polymer tiles, are reported in this study. Methods: PET waste was used in varying proportions (from 30% to 100%) by sand weight. The shredded PET waste was heated at 230 oC before being suitably blended with fly ash. It was then poured into the designated mold, removed after one hour, and cooled for 24 hours before testing. Results: The assessment of the physical and mechanical properties of the materials revealed that the tiles produced with 30% PET content performed better in terms of material density and strength compared to the samples with higher PET content. The highest compressive strength being 6.88 MPa. Based on the results of the tests, the produced PET tiles have a low water absorption efficiency of 80% lower when compare to cement and ceramic tiles (the water absorption values are between 0.98% and 0.09%). Conclusions: The results from this study indicate that PET waste bottles can be used to produce long-lasting, durable, and extremely low water absorption eco-friendly tiles for both residential and commercial applications. This prospect of tile production using polyethylene terephthalate (PET) waste and fly ash would not only minimize the cost of building products but will also act as a waste diversion to mitigate environmental emissions caused by plastic waste disposal.


2012 ◽  
Vol 152-154 ◽  
pp. 86-90
Author(s):  
Xiao Yi Han ◽  
Hai Feng Cheng ◽  
Xin Xing ◽  
Jun Wang

Polymer derived SiC ceramics usually present a relatively low thermal conductivity for the large porosity and complex phases. In order to obtain condensed SiC ceramic with low thermal conductivity, a preceramic precursor polycarbosilane (PCS) was selected as the raw materials. And hot press sintering processes were performed at 1600 °C under Ar atmosphere with the holding time in the range of 20 to 40 min for consolidation. The microstructures and phases were analyzed by scanning electron microscopy (SEM) with energy disperse X-ray spectroscopy (EDS), X-ray diffraction (XRD) and high-resolution transmission electron microscope (HRTEM). The specific heat, thermal diffusivities and thermal conductivities were measured and investigated from room temperature to 650 °C. A minimum thermal conductivity of 4.13 W•m-1•K-1 was obtained at 650 °C with a holding time of 30 min.


2021 ◽  
Vol 8 (1) ◽  
pp. H1-H7
Author(s):  
M. Gundu ◽  
S. Abhaysinha

In recent years, concrete in the construction industry has rapidly increased worldwide, including developing countries like India. The raw materials required to produce such a quantity require huge depletion of natural resources. On the other hand, disposal of paper waste, fly ash, and plastic waste is one of the biggest problems faced by many countries, including India, the amount of waste collected and recycled is less compared to disposal quantity. The use of these wastes in concrete reduces the disposal of waste in nature. In this experiment work, the use of these wastes in the concrete has been studied. Preliminary tests like specific gravity, fineness modulus, and water absorption have been carried out on the materials. Various mix designs are prepared by partial replacement of cement with fly ash and paper pulp, and sand is completely replaced with the quarry dust, and coarse aggregate is replaced with shredded plastic waste to create sustainable concrete. A comparative study on the properties like slump cone, the weight of the cubes, compressive strength and split tensile strength, and feasibility of such concrete has been carried out. Results indicated that the weight of cubes started to decrease with the addition of waste. Compressive strength and split tensile strength show that the strength started to fall with the addition of plastic. The cost of concrete decreased with the addition of waste. 5 % of plastic waste in concrete and 3 % of paper pulp, and 5 % of fly ash is considered the optimal replacement percentage.


Managing plastics waste is a global challenge that challenges the health of our ecosystem due to their high rate of production and non-biodegradability. However, it is important to handle PWs properly to curtail the environmental emissions associated with their incineration and dumping into landfills. The world's building industry is influenced by looking at the expense of construction materials and the required raw materials to manufacture them with the supporting climate that is rising at an unprecedented pace. The recycling of plastic waste into new useful building construction products will be a great advantage In this analysis, the shredded PET waste gathered from the recycling center was heated to 230 0C and used as a binder for the complete substitution of cement with a river sand aggregate for the manufacture of polymer interlocking / paving stones. The physical characteristics and mechanical performance of the aggregate materials and PET polymer concrete (including their distribution of particle size, silt , clay and dust content, relative stiffness, water absorption, porosity, flexural and compressive strength) were tested on various PET waste: 100%, 90%, 70%, 50% and 30% sand mixing percentages. The results showed that the produced interlocks from 30% PET and 70% river sand (3:7) achieved higher density, flexural, and compressive strength than the other combination percentages. The least strength and porosity were exhibited by the polymer concrete produced with 100 % PET. The compressive strength of the PET polymer concrete produced with 30 % PET waste composition was higher than that of cement concrete at 28 days curing. Based on the test results, PET polymer concrete at 30 % PET replacement can be used for interlocking tiles / paving stones due to its strength, low water absorption, and eco-friendliness, especially in water-logged areas. This prospect of interlocking tile production using polyethylene terephthalate (PET) waste and sand would not only minimise the cost of building production, but will only act as a waste diversion to mitigate environmental emissions caused by plastic waste disposal


Author(s):  
OMOSEBI O ◽  
NOOR ABAS ◽  
SULAIMON YAHAYA

Managing plastic waste is a global challenge that challenges our ecosystem’s health due to its high production rate and non-biodegradability. However, it is necessary to ensure that PWs are properly managed to reduce the environmental pollution associated with their incineration and dumping in landfills. This study explores the possibility of utilizing polyethylene terephthalate (PET) waste bottles and river sand to produce floor tiles. The flammability, abrasion resistance, mechanical strength, and strong acid/base resistance of the produced PET-based floor tiles were investigated as well as the micro-structural interface of the PET plastic waste and sand. The PET waste was used at different proportions (100 %, 90 %, 70 %, 50 %, and 30 %) by sand weight. The assessment of the materials’ physical and mechanical properties has shown that, in terms of material density, strength, abrasion, and flame resistance, the floor tiles produced with 30% PET content performed better than those produced with the other PET contents. It showed the highest compressive strength value (19.72 N/mm2). The observed compressive strength values in this study were significantly higher than the recommended 28-day residential concrete value of 17 N/mm2; p<0.05. From the obtained results, the PET floor tiles showed poor water absorption performance compared to pure cement and ceramic floor tiles (The lowest water absorption value of 0.12 % was found in tiles made of 100 % PET waste). Microscopic analysis of the interface region (plastic-binder) showed adhesion between the plastic and sand components of the PET-based floor tiles, as well as voids in direct proportion to the PET content. The PET floor tiles also showed good resistance to acid and base solutions of different strengths. In conclusion, PET waste bottles can be used as cement replacement to produce durable and abrasive resistant floor tiles for both residential and commercial uses.


2000 ◽  
Vol 626 ◽  
Author(s):  
Antje Mrotzek ◽  
Kyoung-Shin Choi ◽  
Duck-Young Chung ◽  
Melissa A. Lane ◽  
John R. Ireland ◽  
...  

ABSTRACTWe present the structure and thermoelectric properties of the new quaternary selenides K1+xM4–2xBi7+xSe15 (M = Sn, Pb) and K1-xSn5-xBi11+xSe22. The compounds K1+xM4-2xBi7+xSe15 (M= Sn, Pb) crystallize isostructural to A1+xPb4-2xSb7+xSe15 with A = K, Rb, while K1-xSn5-xBi11+xSe22 reveals a new structure type. In both structure types fragments of the Bi2Te3-type and the NaCl-type are connected to a three-dimensional anionic framework with K+ ions filled tunnels. The two structures vary by the size of the NaCl-type rods and are closely related to β-K2Bi8Se13 and K2.5Bi8.5Se14. The thermoelectric properties of K1+xM4-2xBi7+xSe15 (M = Sn, Pb) and K1-xSn5-xBi11+xSe22 were explored on single crystal and ingot samples. These compounds are narrow gap semiconductors and show n-type behavior with moderate Seebeck coefficients. They have very low thermal conductivity due to an extensive disorder of the metal atoms and possible “rattling” K+ ions.


Sign in / Sign up

Export Citation Format

Share Document