scholarly journals Thermal Characterization of Non-Functionalized Low Content Graphene Nanoplatelets (GNP) Added Nylon 66 Polymer

Author(s):  
Mohammed Iqbal Shueb ◽  
Mohd Edeerozey Abd Manaf ◽  
Mahathir Mohamed ◽  
Noraiham Mohamad ◽  
Jeeferie Abd Razak ◽  
...  

Thermal behaviour of graphene nanoplatelets (GNP) reinforced nylon 66 nanocomposites were investigated using differential calorimetric scanning (DSC), thermogravimetric analyzer (TGA) and dynamic mechanical analysis (DMA). The influence of low content GNP on thermal properties of GNP/nylon 66 nanocomposites was studied for low GNP content (0.3, 0.5 and 1.0 wt%). DSC results indicate that addition of GNP increases crystallization temperature and degree of crystallinity of the nanocomposites. Thermal stability and mass loss were studied through TGA analysis. The results show that thermal stability and weight loss of GNP/nylon 66 nanocomposites slightly improve with the GNP addition with an increase in the onset of degradation temperature as much as 10 °C. DMA analysis shows that GNP in the nylon 66 matrix act similar to plasticizer; it decreases the storage modulus and glass transition temperatures of the nanocomposites. GNP addition also reduces tan δ indicating an improvement in the damping property of the nanocomposites. Overall, this study concludes that a minimal amount of 0.3 wt% of GNP is effective in improving the thermal properties of nylon 66 composites.

Author(s):  
Mohammad K. Hossain ◽  
Md Mahmudur R. Chowdhury ◽  
Mahesh Hosur ◽  
Shaik Jeelani ◽  
Nydeia W. Bolden

A systematic study has been conducted on processing and characterization of epoxy polymer composite to enhance its mechanical, viscoelastic, and thermal properties through optimization of graphene nanoplatelets (GNP). GNP having a two dimensional structure is composed of several layers of graphite nanocrystals stacked together. GNP is expected to provide better reinforcing effect in polymer matrix composites as a nanofiller along with greatly improved mechanical and thermal properties due to its planar structure and ultrahigh aspect ratio. GNP is also considered to be the novel nanofiller due to its exceptional functionalities, high mechanical strength, chemical stability, abundance in nature, and cost effectiveness. Moreover, it possesses an extremely high-specific surface area which carries a high level of transferring stress across the interface and provides higher reinforcement than carbon nanotubes (CNT) in polymer composites. Hence, this research has been focused on the reinforcing effect of the amine-functionalized GNP on mechanical, viscoelastic, and thermal properties of the epoxy resin-EPON 828 composite. Amine functionalized GNP was infused in EPON 828 at different loadings including 0, 0.1, 0.2, 0.3, 0.4, and 0.5 wt% as a reinforcing agent. GNP was infused into epoxy resin Epon 828 Part-A using a high intensity ultrasonic liquid processor followed by a three roll milling processor for better dispersion. The GNP/epoxy mixture was then mixed with the curing agent Epikure 3223 according to the stoichiometric ratio (Part A: Part B = 12:1). The mixture was then placed in a vacuum oven at 40 °C for 10 m to ensure the complete removal of entrapped bubbles and thus reduce the chance of void formation. The as-prepared resin mixture was then poured in rubber molds to prepare samples for mechanical, viscoelastic, and thermal characterization according to ASTM standards. Molds containing liquid epoxy nanocomposites were then kept in the vacuum oven at room temperature for seven days to confirm full curing of the samples according to the manufacturer’s suggestion. Similarly, neat epoxy samples were fabricated to obtain its baseline properties through mechanical, viscoelastic, and thermal characterization and compare these properties with those of nanophased ones. The reinforcing effect of the amine-functionalized GNP on the epoxy was characterized through mechanical, viscoelastic, and thermal analyses. Fracture morphology of mechanically tested samples was evaluated through scanning electronic microscopy (SEM) study. The mechanical properties were determined through flexure test according to the ASTM standard. Dynamic mechanical analysis (DMA) and thermo-mechanical analysis (TMA) were performed to analyze viscoelastic and thermal performances of the composite. In all cases, the 0.4 wt% GNP infused epoxy nanocomposite exhibited the best properties. The 0.4 wt% GNP-loaded epoxy sample showed 20% and 40% improvement in flexure strength and modulus, respectively. Moreover, 16% improvement in the storage modulus and 37% decrease in the coefficient of thermal expansion were observed due to the integration of GNP reinforcement into the epoxy system. Scanning electronic micrographs exhibited smooth fracture surface for the neat sample, whereas the roughness of surface increased due to the GNP incorporation. This is an indication of change in the crack propagation during loading and a higher energy requirement to fracture the GNP-loaded sample.


2021 ◽  
Author(s):  
Ahlem Bendaoued ◽  
Mouna Messaoud ◽  
Omar Harzallah ◽  
Sophie Bistac ◽  
Rached Salhi

Abstract Ceramics nanometric reinforced polymer composite is a significant material for catalysis, solar cells, production of hydrogen and energy applications, etc. In order to take benefit from the interesting mechanical properties and thermal stability of TiO2, these ceramic nanomaterials was synthesized by the Sol-Gel process in attempt to study the thermal stability, structure, and morphology of the resulting nanoparticles powders. The obtained results revealed that, the sphere is composed of 20-30 nm nanoparticles with excellent thermal stability of nano-TiO2. This work focused on the thermal characterization and the study of nanocomposite xWt. %TiO2/PP (x=0, 2.5, 5, 7.5 mol%). In this study, the obtained results revealed that the molar ratio of TiO2 influences the final thermal stability and degree of crystallinity of the composite. It was found that the use of TiO2 seems to be an effective and very promising way to increase the thermal properties of the resulting composite. The greatest degree of crystallinity (54.80%) and thermal degradation stability are obtained for composite reinforced by 7.5Wt. %TiO2.


2021 ◽  
Author(s):  
Qifeng Jiang ◽  
Sydnee Wong ◽  
Rebekka S Klausen

Thermal characterization of polysilanes has focused on the influence of organic side chains, whereas little is understood about the influence of silane backbone microstructure on thermal stability, phase properties, and...


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Emi Govorčin Bajsić ◽  
Vesna Rek ◽  
Ivana Ćosić

The effect of the addition of talc on the morphology and thermal properties of blends of thermoplastic polyurethane (TPU) and polypropylene (PP) was investigated. The blends of TPU and PP are incompatible because of large differences in polarities between the nonpolar crystalline PP and polar TPU and high interfacial tensions. The interaction between TPU and PP can be improved by using talc as reinforcing filler. The morphology was observed by means of scanning electron microscopy (SEM). The thermal properties of the neat polymers and unfilled and talc filled TPU/PP blends were studied by using dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The addition of talc in TPU/PP blends improved miscibility in all investigated TPU/T/PP blends. The DSC results for talc filled TPU/PP blends show that the degree of crystallinity increased, which is due to the nucleating effect induced by talc particles. The reason for the increased storage modulus of blends with the incorporation of talc is due to the improved interface between polymers and filler. According to TGA results, the addition of talc enhanced thermal stability. The homogeneity of the talc filled TPU/PP blends is better than unfilled TPU/PP blends.


2011 ◽  
Vol 239-242 ◽  
pp. 2905-2908 ◽  
Author(s):  
Jun Gang Gao ◽  
Wei Hong Wu ◽  
Xing Li

Boron-containing bisphenol-S formaldehyde resin (BBPSFR) was synthesized by formalin method. The structure and thermal properties of BBPSFR were characterized by 1H NMR, FTIR, torsional braid analysis (TBA) and thermogravimetric analysis (TGA), respectively. The results showed that the borate had formed, and the six-member ring containing boron-oxygen coordinate structure also formed during the curing process. The glass transition temperature (Tg) of BBPSFR is higher 104°C than that of bisphenol-S formaldehyde resins (BPSFR); the initial degradation temperature (Ti ) increases about 43°C; thermal degradation rate decrease and thermal stability increase significantly.


Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2636
Author(s):  
Tomasz M. Majka ◽  
Oskar Bartyzel ◽  
Konstantinos N. Raftopoulos ◽  
Joanna Pagacz ◽  
Krzysztof Pielichowski

Pyrolysis of the polypropylene/montmorillonite (PP/OMMT) nanocomposites allows for recovery of the filler that can be then re–used to produce PP/pyrolyzed MMT (PMMT) nanostructured composites. In this work, we discuss the thermal properties of PP/PMMT composites investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). It has been found that effect of PMMT (5 wt. % and 10 wt. %) on matrix thermal stability occurs at temperatures above 300 °C. Addition of 5 wt. % and 10 wt. % of PMMT into polypropylene system gave good stabilization effect, as confirmed by the overall stabilization effect (OSE) values, which increased by 4% and 7%, respectively, compared to the control sample (PP). Interestingly, the presence of 1 wt. % and 3 wt. % of pyrolyzed clay stabilizes the system better than the same concentrations of organoclay added into polypropylene melt. DSC data revealed that pyrolyzed clay has still the same tendency as organoclay to enhance formation of the α and β crystalline PP phases only. The pyrolyzed MMT causes an improvement of the modulus in the glassy as well as rubbery regions, as confirmed by DMA results.


2011 ◽  
Vol 374-377 ◽  
pp. 1426-1429
Author(s):  
Xiao Meng Guo ◽  
Jian Qiang Li ◽  
Xian Sen Zeng ◽  
De Dao Hong

In this study, the thermal properties of a kind of new geotextile materials, so called controlled permeable formwork (CPF), were studied. Thermo-gravimetric analysis showed that the weight of CPF didn’t change much between 0~350 °C. Dynamic mechanical analysis showed that the storage modulus of CPF reduced from 25 MPa to around 10 MPa when the temperature rose to above 100 °C. The strength of sample decreased slightly with the increase of the temperature. The breaking elongation changed slightly with a maximum at 80 °C. The CPF showed excellent thermal stability and was suitable for general use in construction work.


2013 ◽  
Vol 748 ◽  
pp. 201-205
Author(s):  
Abd Aziz Noor Zuhaira ◽  
Rahmah Mohamed

In this research, rice husk and kenaf fiber were compounded with calcium carbonate (CaCO3)/high density polyethylene (HDPE) composite.Different loadings of up to 30 parts of 50 mesh sizes of rice husk particulate and kenaf fiber were compounded using twin-screw extruder with fixed 30 parts of CaCO3 fillerto produce hybrid composites of rice husk/CaCO3/HDPE and kenaf/CaCO3/HDPE.Compounded hybrid composites were prepared and tested for thermal properties. The thermal stability of the components was examined by thermogravimetricanalysis (TGA) and differential scanning calorimetric (DSC). The DSC results showed a slightly changes in melting temperature (Tm), crystallization temperature (Tc) and the degree of crystallinity (Xc) with addition of natural fiber. TGA indicates thermal stability of hybrid composite filled with kenaf or rice husk is better than unfilledCaCO3/HDPE composite.


2016 ◽  
Vol 29 (10) ◽  
pp. 1139-1147 ◽  
Author(s):  
Zi Sang ◽  
Tiantian Feng ◽  
Wenbin Liu ◽  
Jun Wang ◽  
Mehdi Derradji

A new series of aniline and aniline-mixed tetrafunctional fluorene-based oxazine monomers were synthesized using 2,7-hydroxy-9,9-bis-(4-hydroxyphenyl) fluorene, paraformaldehyde, and primary amines (including aniline or aniline mixed with n-butylamine or n-octylamine composition). Fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy were used to characterize the structure of the monomers. The copolymers were obtained by adding the monomers into a typical monofunctional polybenzoxazine (phenol-aniline-based benzoxazine). Differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis were performed to study the thermal properties of the copolymers. The copolymers exhibited high glass transition temperature values (164–201°C). A good thermal stability was also obtained with a 5% weight loss temperature over 355°C and high char yields at 800°C (42–50%).


2020 ◽  
Vol 858 ◽  
pp. 59-65
Author(s):  
Nattakarn Hongsriphan ◽  
Kantika Somboon ◽  
Chutikan Paujai ◽  
Thitichaya Taengto

The composites between polyamide 11 (PA11) and functionalized graphene nanoplatelets (GNP) were prepared to compare influence of GNPs content and functionalities; hydroxyl (GO) and carboxylic acid (GC); on mechanical and thermal properties. The composites were melt compounded and injection molded into specimens with the final GNP content of 1, 3, 5, 7 and 9 wt%. It was found in XRD that these plasma-exfoliated GNPs acted as the nucleating agents that changed the crystal form of PA11, but did not have significant influence on crystallinity content. DSC analysis confirmed the nucleating effect of GNPs, which the degree of crystallinity was not affected by the presence of GNPs. The functionalities of GNP did not reduce the degradation temperature of the composites compared to neat PA11. Young's modulus and tensile strength at yield of the composites were higher with respect to the GNP content. This was attributed to stretching restriction of polymer chains by GNPs during the elastic deformation. The composites adding GO had higher tensile properties than those adding GC. In contrast, the composites adding GC showed higher impact strength than those adding GO. SEM micrographs indicated the failure of the composites occurred at the interphase between PA11 matrix and GNPs.


Sign in / Sign up

Export Citation Format

Share Document