scholarly journals Synthesis of morpholinium salts based on chloroacylated derivatives of dihydroquercetin

2019 ◽  
Vol 59 (7) ◽  
pp. 37-42
Author(s):  
Anton O. Pozdeev ◽  
◽  
Alexander M. Koroteev ◽  
Sofia N. Pimankina ◽  
Mikhail P. Koroteev ◽  
...  

The flavonoid dihydroquercetin and its esterified derivatives possess various biological activities and are widely used as dietary supplements and in pharmacology. A significant disadvantage of this flavonoid is its low solubility in water at ordinary temperatures of up to 0.03%, which negatively affects its biological activity. Nature overcomes this problem by glycosylation, sulfation, and phosphorylation. In chemistry and pharmacology to overcome this problem, there are several synthetic approaches. For dihydroquercetin (DHQ) is the inclusion of DHQ in the cyclodextrin matrix or the formation of a complex of DHQ with basic natural amino acids. In this paper, a method is proposed for obtaining water-soluble morpholinium salts based on chloroacylated derivatives of DHQ. The acylation reaction was carried out in dioxane, pyridine was used as an acceptor of choric hydrogen. The target compounds were obtained with a yield of 68-79%. As a result, chlorinated derivatives based on DHQ and its acyl and benzyl derivatives were synthesized. These derivatives in the interaction with morpholine form its salts, which, as it turned out, have a high water solubility. Pentamorpholine salt of DHQ had the highest solubility in water, up to 6.5% at room temperature, which is 200 times more soluble than the original DHQ. The proposed synthetic approach to increase the water solubility of acyl derivatives of DHQ can be extended using other nitrogenous bases and other haloacyl derivatives of DHQ.

Proceedings ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 48 ◽  
Author(s):  
◽  
Emilia Tojo

The transformation of two solid Active Pharmaceutical Ingredients (APIs) into new ionic liquids (IL)s that incorporate APIs (API-ILs) is reported. The structures of the APIs (indomethacin and mebendazole) were selected by their susceptibility to being transformed into API-ILs (either to form the cation or the anion) and their limited bioavailability due to their low solubility in water. The counterions, such as those derived from 2-dimethylaminoethanol (DMEA), tetramethylguanidine (TMG), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), 1,4-diazabicyclo[2.2.2] (TED), <i>p</i>-toluensulfonic acid, glycolic acid, methanesulfonic acid, and saccharin, were carefully chosen, aiming for high biocompatibility, low toxicity, and high water solubility. The synthesis was carried out by direct treatment of the API with the corresponding selected acid or base. Finally, the solubility in water of all the synthesized salts was determined.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 938
Author(s):  
Miguel Meléndez-Zamudio ◽  
Ileana Bravo-Flores ◽  
Eulalia Ramírez-Oliva ◽  
Antonio Guerra-Contreras ◽  
Gilberto Álvarez-Guzmán ◽  
...  

Stone consolidants have been widely used to protect historical monuments. Consolidants and hydrophobic formulations based on the use of tetraethoxysilane (TEOS) and alkylalkoxysilanes as precursors have been widely applied, despite their lack of solubility in water and requirement to be applied in organic media. In the search for a “greener” alternative based on silicon that has potential use in this field, the use of tetrakis(2-hydroxyethyl)silane (THEOS) and tris(2-hydroxyethyl)methyl silane (MeTHEOS) as precursors, due their high water solubility and stability, is proposed in this paper. It is already known that THEOS and MeTHEOS possess remarkable compatibility with different natural polysaccharides. The investigated approach uses the water-soluble silanes THEOS–chitosan and MeTHEOS–chitosan as a basis for obtaining hybrid consolidants and hydrophobic formulations for the conservation of siliceous and calcareous stones. In the case of calcareous systems, their incompatibility with alkoxysilanes is known and is expected to be solved by the developed hybrid consolidant. Their application in the conservation of building stones from historical and archeological sites from Guanajuato, México was studied. The evaluation of the consolidant and hydrophobic formulation treatment was mainly conducted by determining the mechanical properties and contact angle measurements with satisfactory results in terms of the performance and compatibility with the studied stones.


2021 ◽  
Vol 37 (6) ◽  
pp. 533-542
Author(s):  
Florencia Anabel Mesas ◽  
María Cecilia Terrile ◽  
María Ximena Silveyra ◽  
Adriana Zuñiga ◽  
María Susana Rodriguez ◽  
...  

Chitosan has been considered an environmental-friendly polymer. However, its use in agriculture has not been extended yet due to its relatively low solubility in water. N-Methylene phosphonic chitosan (NMPC) is a water-soluble derivative prepared by adding a phosphonic group to chitosan. This study demonstrates that NMPC has a fungicidal effect on the phytopathogenic fungus Fusarium solani f. sp. eumartii (F. eumartii) judged by the inhibition of F. eumartti mycelial growth and spore germination. NMPC affected fungal membrane permeability, reactive oxygen species production, and cell death. Also, this chitosan-derivative exerted antifungal effects against two other phytopathogens, Botrytis cinerea, and Phytophthora infestans. NMPC did not affect tomato cell viability at the same doses applied to these phytopathogens to exert fungicide action. In addition to water solubility, the selective biological cytotoxicity of NMPC adds value in its application as an antimicrobial agent in agriculture.


2019 ◽  
Vol 9 (5) ◽  
pp. 419-428
Author(s):  
Li Li ◽  
Chunjiao Pan ◽  
Zhongqiu Guo ◽  
Bingmi Liu ◽  
Hao Pan ◽  
...  

In this study, graphene oxide was synthesized using the Hummers method, and stable and homogeneous graphene oxide aqueous solutions were obtained through mechanical stirring and ultrasonic stripping. In conjunction with our previous studies, graphene oxide-loaded insoluble compound delivery systems were prepared to verify the in vivo release profiles of the graphene oxide delivery system. Several insoluble compounds including imatinib, nilotinib, erlotinib, gefitinib, and afatinib were selected for loading and in vitro graphene oxide release assays to study the non-covalent adsorption mechanisms. Computer simulations were employed for validation processes. For in vivo release assays, the T1/2 values of the poorly water soluble groups were 1.104 ± 0.18 h and the Cmax was 2.600 ± 2.06 mg/L. In previous assays, compounds with high water solubility supported by graphene oxide were released and detected in vivo. The solubility of the compound and its binding force with the carrier played a crucial role in release. The results of graphene oxide loading experiments showed that the maximum loading and entrapment efficiencies of the insoluble model compounds with similar aromatic rings were comparable. Under basic conditions, the in vitro release rates and maximum release levels of amino pyrimidine were elevated. In contrast, quinazoline release declined. Combined with computer simulations, π–π stacking was identified as the dominant mechanism for adsorption onto graphene oxide. Both hydrogen bonding and cation-π bonds played an auxiliary reinforcing role, and the two were regarded as antagonistic.


RSC Advances ◽  
2020 ◽  
Vol 10 (13) ◽  
pp. 7643-7653 ◽  
Author(s):  
Eunsoo Kim ◽  
Rajeev K. K. ◽  
Jaebin Nam ◽  
Junyoung Mun ◽  
Tae-Hyun Kim

We develop a polymeric binder with outstanding cell properties, and high water solubility for Si anodes by grafting a conductive PAAA onto chitosan.


2014 ◽  
Vol 12 (40) ◽  
pp. 8061-8071 ◽  
Author(s):  
Martina Delbianco ◽  
Laurent Lamarque ◽  
David Parker

The use of a trifluoroethyl ester group to protect sulfonic acid moieties is used in the synthesis of a short series of water-soluble, very bright europium(iii) complexes.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 772 ◽  
Author(s):  
Songbai Zhang ◽  
Vega Lloveras ◽  
Daniel Pulido ◽  
Flonja Liko ◽  
Luiz F. Pinto ◽  
...  

Finding alternatives to gadolinium (Gd)-based contrast agents (CA) with the same or even better paramagnetic properties is crucial to overcome their established toxicity. Herein we describe the synthesis and characterization of entirely organic metal-free paramagnetic macromolecules based on biocompatible oligoethylene glycol dendrimers fully functionalized with 5 and 20 organic radicals (OEG Gn-PROXYL (n = 0, 1) radical dendrimers) with the aim to be used as magnetic resonance imaging (MRI) contrast agents. Conferring high water solubility on such systems is often a concern, especially in large generation dendrimers. Our approach to overcome such an issue in this study is by synthesizing dendrimers with highly water-soluble branches themselves. In this work, we show that the highly water-soluble OEG Gn-PROXYL (n = 0, 1) radical dendrimers obtained showed properties that convert them in good candidates to be studied as contrast agents for MRI applications like diagnosis and follow-up of infectious diseases, among others. Importantly, with the first generation radical dendrimer, a similar r1 relaxivity value (3.4 mM−1s−1) in comparison to gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) used in clinics (3.2 mM−1s−1, r.t. 7T) has been obtained, and it has been shown to not be cytotoxic, avoiding the toxicity risks associated with the unwanted accumulation of Gd in the body.


2021 ◽  
Vol 58 (2) ◽  
pp. 88-96
Author(s):  
Dominic Byrne ◽  
Geert Boeije ◽  
Ian Croft ◽  
Gerd Hüttmann ◽  
Gerard Luijkx ◽  
...  

Abstract Questions and potential misperceptions have arisen about the potential contribution of liquid detergent capsules to the environmental microplastics issue. The film of these detergents is highly water soluble, also in cold water, as it must fully dissolve during every type of washing process. Water-soluble grades of polyvinyl alcohol, the most commonly used detergent capsule film material, are recognised to be biodegradable. In the current paper, adequate biodegradability is confirmed by means of ready biodegradation screening tests, across a range of polyvinyl alcohol detergent grade films. The high water solubility in itself implies that detergent capsule films are not within the microplastic scope. Furthermore, their biodegradability ensures there is no concern for persistence or accumulation in the environment.


2020 ◽  
Vol 23 (3) ◽  
pp. First
Author(s):  
Pham Duc Dung ◽  
Duong Thuc Huy ◽  
Nguyen Van Kieu

Introduction: Usnic acid isolated from lichen was a potential bioactivity compound. It has a broad spectrum bioactivity, including antiviral, anti-inflammatory, anticancer… However, low solubility in water limited its application. Many researchs have done to overcome the restriction. Recent results showed that usnic acid derivatives bearing triazole, enamine, pyrazole and benzylidene groups had strong antiviral and anticancer activities. Thus, investigation of usnic acid derivatives synthesis was an attractive aspect due to the diversity of bioactivities of usnic acid derivatives. Methods: Usnic acid was isolated from lichen, six ester derivatives of usnic acid were synthesized from usnic acid with acetyl chloride and benzoyl chloride under stirring at room temperature. The products were evaluated α-glucosidase and tyrosinase inhibitory activities. Results: All the ester derivatives were created with good yields. All derivatives exhibited the same or higher activity comparing with usnic acid. Ester of usnic acid bearing benzoyl group showed excellent α-glucosidase activity with IC50 26.7±0.57 and 68.8±0.15 µM. Conclusion: Among the ester derivatives, UE1 and UE6 were reported as as new compounds. Interestingly, all products displayed the same or higher biological activity than the starting material, usnic acid when evaluated against α-glucosidase and tyrosinase.


2003 ◽  
Vol 89 (01) ◽  
pp. 104-111 ◽  
Author(s):  
Kyu-Tae Kang ◽  
Byoung-In Jung ◽  
Ok-Nam Bae ◽  
Moo-Yeol Lee ◽  
Seung-Min Chung ◽  
...  

SummaryAn amidrazonophenylalanine derivative, LB30057, inhibits the catalytic activity of thrombin potently by interaction with the active site of thrombin, and has high water solubility. In the present study, we evaluated the effect of LB30057 on the biological activities of thrombin at various tissues, and determined whether thrombin inhibition by LB30057 could reduce the incidence of occlusive thrombosis in an in vivo animal model. Treatment with LB30057 to human plasma prolonged clotting times in a concentration-dependent manner. LB30057 suppressed significantly thrombin-induced phosphatidylserine (PS) exposure in platelets, suggesting that LB30057 could inhibit blood coagulation accelerated by PS exposure. In human platelets, soluble thrombin- and clot-induced platelet aggregation was inhibited by LB30057 potently. Consistent with this finding, LB30057 showed concentration-dependent inhibitory effects on serotonin secretion and P-selectin expression induced by thrombin in platelets. In the blood vessel isolated from the guinea pig, treatment with LB30057 resulted in a concentration-dependent inhibition of thrombin-induced vascular contraction. In vivo study revealed that LB30057 following oral administration significantly increased the time to occlusion and improved carotid arterial patency using rat carotid artery thrombosis model. All these results suggest that LB30057 is a potent inhibitor of biological activities of thrombin at various target tissues and, therefore, might be developed as an anti-thrombotic agent for treatment and prevention of thrombotic diseases.


Sign in / Sign up

Export Citation Format

Share Document