scholarly journals A Comparative Study on Responsive Facade Systems

2021 ◽  
Author(s):  
Ecenur Kızılorenli ◽  
◽  
Feray Maden

As the interaction between architecture and technology have increased, the technology changed the decisions made on the building designs. The developments in building technology, material sciences, engineering and robotics have opened up a new perspective in architecture leading to kinetic architecture. Among the examples of the kinetic architecture, responsive facades have become more significant in the last decades due the advantages they provide. Compared to the conventional façade systems, the responsive facades are multifunctional since they can reduce the building’s heating and cooling loads, control daylight transmission, allow natural ventilation and provide optimal indoor environment for the occupants. In recent years, various responsive facades have been realized in response to the changing environmental, functional or spatial conditions. Although they seem similar in terms of the functionality, their systems are different. This paper aims to propose a comparison matrix to analyse and compare such responsive facades systematically according to their system types, movements, functions, control systems, response time and visibility.

2014 ◽  
Vol 20 (5) ◽  
pp. 714-723 ◽  
Author(s):  
Hendrik Voll ◽  
Erkki Seinre

Modern office building designs tend to increase the window share per facade to make the building more impressive with extensive visibility and well daylit rooms. In general, an increased window share results in higher energy usage and higher costs of heating and cooling, but these disadvantages can be reduced with a more careful design. The aim of this paper is to show the influence of window design and room layout on heating and cooling demand and daylight availability in office buildings in northern Europe. The results in the paper are based on design calculations for two different room types and daylight measurements on two room scale models in a daylight laboratory. The calculations show the influence of window design parameters on the cooling and heating demand. The daylight measurements show the influence of window design parameters on the availability of daylight. The results have then been combined to show a feasible window design regarding daylight availability and the resulting cooling and heating demands for different window orientations. The results show that in most cases it is possible to find a combination of window share and window solar factor that is feasible with regard to daylight as well as cooling and heating. The main finding is that there is a smaller or wider range of feasible designs for different window orientations.


2021 ◽  
Vol 6 ◽  
pp. 33
Author(s):  
Nuno R. Martins ◽  
Peter J. Bourne-Webb

Building foundation piles can be used as heat exchangers in ground-source heat pump (GSHP) systems to provide highly efficient renewable heating and cooling (H&C). Unbalanced H&C loads lead to heat build-up in the ground, decreasing the system's overall performance. In this study, the introduction of natural ventilation (NV) has been examined to decrease cooling load imbalance in cooling-dominated buildings to improve system efficiency. Building energy simulations estimated the H&C loads for an office building in three Portuguese cities: Lisbon, Porto and Faro, yielding heating loads of 0.2–3.6 MWh/year and cooling loads of 260–450 MWh/year. Four renewable H&C technology scenarios were used to assess energy performance: (1) an air-source heat pump (ASHP) system; (2) a GSHP system utilizing energy piles; (3) hybrid ASHP-NV and (4) hybrid GSHP-NV. Over 50 years of operation, in Scenario (1) COP values of 2.45–2.55 (heating) and 3.62–4.15 (cooling) were obtained. In (2), COP values increased to 4.15–4.34 (heating) but fell to 3.36–3.79 (cooling), which increased annual final energy needs by 7–8%. Unbalanced cooling loads increased the ground temperature by 21–24 °C, which is unlikely to be acceptable. Compared to (1), introducing NV reduced cooling loads by 65–90% in Scenarios (3) and (4), with the final energy needs decreasing by 59–80% and 62–88%, respectively. A further benefit of the GSHP-NV hybrid is that the ground temperature increase was limited to 8‑12 °C. For cooling, the COP in (3) decreased compared to (1) (3.14–3.69), while in (4), COP improved to 3.45–6.10. This study concludes that hybrid GSHP-NV systems should be considered in some cooling-dominated scenarios.


Author(s):  
Wendell Concina ◽  
Suresh B. Sadineni ◽  
Robert F. Boehm

The goal of the project is to evaluate various types of facades’ behavior and effects on building energy, focused primarily on building fenestrations such as windows. Development of the fac¸ade evaluation facility and requirements are presented in this paper. The test facility is a complete standalone unit designed to replicate a section of a building. Accommodation for facilitating a wide range of fenestrations was an important criterion. An effective solution was developed that allowed instant interchangeability of the fac¸ade setup. Although, due south orientated facades was of primary interest, integration of a rotating carousel base allowed flexibility in adjusting the orientation of the test facility. Experimental procedures and instrumentation layout are discussed in detail. The temperature of the indoor environment is continuously controlled and monitored. The measured fenestration characteristics include thermal and optical properties of the windows. The test results reveal the fenestration performance. The outcome of these tests enumerates the effects of the fac¸ade on the overall heating and cooling loads of buildings. Further investigation into these characteristics assists in improving building energy efficiency. Due to the versatility of the facility, quick replacement of the fac¸ade can accommodate several tests in short durations of time. Furthermore, correlation of the results can be scaled appropriately for residential or commercial settings providing practical information for wide utilization, contingent upon the window type.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4388
Author(s):  
Esmail Mahmoudi Saber ◽  
Issa Chaer ◽  
Aaron Gillich ◽  
Bukola Grace Ekpeti

Natural ventilation is gaining more attention from architects and engineers as an alternative way of cooling and ventilating indoor spaces. Based on building types, it could save between 13 and 40% of the building cooling energy use. However, this needs to be implemented and operated with a well-designed and integrated control system to avoid triggering discomfort for occupants. This paper seeks to review, discuss, and contribute to existing knowledge on the application of control systems and optimisation theories of naturally ventilated buildings to produce the best performance. The study finally presents an outstanding theoretical context and practical implementation for researchers seeking to explore the use of intelligent controls for optimal output in the pursuit to help solve intricate control problems in the building industry and suggests advanced control systems such as fuzzy logic control as an effective control strategy for an integrated control of ventilation, heating and cooling systems.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2827
Author(s):  
Pavla Mocová ◽  
Jitka Mohelníková

Indoor climate comfort is important for school buildings. Nowadays, this is a topical problem, especially in renovated buildings. Poorly ventilated school classrooms create improper conditions for classrooms. A post-occupancy study was performed in a school building in temperate climatic conditions. The evaluation was based on the results of long-term monitoring of the natural ventilation strategy and measurements of the carbon dioxide concentration in the school classroom’s indoor environment. The monitoring was carried out in an old school building that was constructed in the 1970s and compared to testing carried out in the same school classroom after the building was renovated in 2016. Surprisingly, the renovated classroom had a significantly higher concentration of CO2. It was found that this was due to the regulation of the heating system and the new airtight windows. The occupants of the renovated classroom have a maintained thermal comfort, but natural ventilation is rather neglected. A controlled ventilation strategy and installation of heat recovery units are recommended to solve these problems with the classroom’s indoor environment. Microbiological testing of the surfaces in school classrooms also shows the importance of fresh air and solar radiation access for indoor comfort.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3876
Author(s):  
Sameh Monna ◽  
Adel Juaidi ◽  
Ramez Abdallah ◽  
Aiman Albatayneh ◽  
Patrick Dutournie ◽  
...  

Since buildings are one of the major contributors to global warming, efforts should be intensified to make them more energy-efficient, particularly existing buildings. This research intends to analyze the energy savings from a suggested retrofitting program using energy simulation for typical existing residential buildings. For the assessment of the energy retrofitting program using computer simulation, the most commonly utilized residential building types were selected. The energy consumption of those selected residential buildings was assessed, and a baseline for evaluating energy retrofitting was established. Three levels of retrofitting programs were implemented. These levels were ordered by cost, with the first level being the least costly and the third level is the most expensive. The simulation models were created for two different types of buildings in three different climatic zones in Palestine. The findings suggest that water heating, space heating, space cooling, and electric lighting are the highest energy consumers in ordinary houses. Level one measures resulted in a 19–24 percent decrease in energy consumption due to reduced heating and cooling loads. The use of a combination of levels one and two resulted in a decrease of energy consumption for heating, cooling, and lighting by 50–57%. The use of the three levels resulted in a decrease of 71–80% in total energy usage for heating, cooling, lighting, water heating, and air conditioning.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 512
Author(s):  
Younhee Choi ◽  
Doosam Song ◽  
Sungmin Yoon ◽  
Junemo Koo

Interest in research analyzing and predicting energy loads and consumption in the early stages of building design using meta-models has constantly increased in recent years. Generally, it requires many simulated or measured results to build meta-models, which significantly affects their accuracy. In this study, Latin Hypercube Sampling (LHS) is proposed as an alternative to Fractional Factor Design (FFD), since it can improve the accuracy while including the nonlinear effect of design parameters with a smaller size of data. Building energy loads of an office floor with ten design parameters were selected as the meta-models’ objectives, and were developed using the two sampling methods. The accuracy of predicting the heating/cooling loads of the meta-models for alternative floor designs was compared. For the considered ranges of design parameters, window insulation (WDI) and Solar Heat Gain Coefficient (SHGC) were found to have nonlinear characteristics on cooling and heating loads. LHS showed better prediction accuracy compared to FFD, since LHS considers the nonlinear impacts for a given number of treatments. It is always a good idea to use LHS over FFD for a given number of treatments, since the existence of nonlinearity in the relation is not pre-existing information.


Author(s):  
Frank Butera ◽  
Keith Hewett

Maximising cross ventilation is a low energy method of naturally ventilating and providing heating and cooling to deep plan spaces. Significant reduction in the emission of greenhouse gases can be achieved through minimising the use of mechanical systems in regions with climatic conditions that support the use of natural ventilation. Arup has provided input into the design of a louvered facade for the control of external noise for Brisbane Domestic Airport. A full scale prototype facade was constructed and noise transmission loss measurements were undertaken. The results indicate that significant noise reduction can be achieved to enable compliance with the internal noise limits for airport terminals, whilst using natural ventilation. The findings from this research will directly benefit building designers and innovators in the pursuit of achieving sustainable building design.


Sign in / Sign up

Export Citation Format

Share Document