scholarly journals PARAMETERS MONITORING ORGANIZATION OF THE SOLAR PANELS EXPERIMENTAL STAND

Author(s):  
Роман Андреевич Иванов ◽  
Никита Владимирович Максаков

Актуальность разработки обусловлена необходимостью создания устройства для сбора и обработки информации с экспериментального стенда солнечных панелей. Назначением стенда является получение достоверных данных для верификации моделей оценки показателей гелиопотенциала, использующихся при обосновании эффективности применения солнечных электростанций на территории восточных регионов России. Дано описание основного и вспомогательного оборудования экспериментального стенда. Солнечные панели стенда разноориентированы для определения наиболее эффективного угля наклона и обоснования необходимости применения следящей за солнцем системы. Для снятия и записи мгновенной мощности солнечных панелей разработано устройство на основе микроконтроллера Arduino. Для мониторинга показаний силы тока используется шунтовый амперметр, подключаемый в разрыв цепи питания. Приведена схема счётчика тока и описана его работа. Приведены первичные результаты собранных данных. Намечены основные этапы дальнейшей обработки данных. The relevance of the presented development is due to the need to create a device to read and process information from an experimental array of solar panels. The purpose of the array is to obtain reliable data for the verification of models for estimating photovoltaic power potential indicators used in justifying the feasibility of the adoption of solar power plants in the eastern regions of Russia. We present a description of the main and auxiliary equipment of the experimental array. The array's solar panels are arranged in different ways so as to determine the most efficient tilt angle and justify the need to use a sun tracking system. The proprietary device based on the Arduino microcontroller was designed to read and write the value of instantaneous power of solar panels. To monitor the readings of the amperage, a shunt ammeter is used, which is connected to the gap of the power circuit. The study provides a diagram of the current meter and describe its operation. We outlined the main stages of subsequent data processing.

2021 ◽  
Vol 289 ◽  
pp. 05001
Author(s):  
Roman Ivanov ◽  
Nikita Maksakov

The relevance of the presented development is due to the need to create a device to read and process information from an experimental array of solar panels. The purpose of the array is to obtain reliable data for the verification of models for estimating photovoltaic power potential indicators used in justifying the feasibility of the adoption of solar power plants in the eastern regions of Russia. We present a description of the main and auxiliary equipment of the experimental array. The array’s solar panels are arranged in different ways so as to determine the most efficient tilt angle and justify the need for building a sun-tracking system. The proprietary device based on the Arduino microcontroller was designed to read and write the value of instantaneous power of solar panels. The sensor that will monitor the amperage is ACS712, which is connected to the gap of the power circuit. The study provides a diagram of the current meter and describe its operation. We outline the main stages of subsequent data processing.


Author(s):  
Kanhaiya Kumar ◽  
Lokesh Varshney ◽  
A. Ambikapathy ◽  
Inayat Ali ◽  
Ashish Rajput ◽  
...  

<p>Electricity is a major source of energy for fast growing population and the use of nonrenewable source is harmful for our environment. This reason belongs to devastating of environment, so it is required to take immediate action to solve these problems which result the solar energy development. Production of a solar energy can be maximizing if we use solar follower. The major part of solar panels is microcontroller with arrangement of LDR sensor is used to follow the sun, where the sensors is less efficient to track the sun because of the low sensitivity of LDR. We are proposing a method to track sun more effetely with the help of both LDR sensors and image processing. This type of mechanism can track sun with the help of image processing software which combines both result of sensors and processed sun image to control the solar panel. The combination of both software and hardware can control thousands of solar panels in solar power plants.</p>


Kilat ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 261-271
Author(s):  
Sugeng Purwanto

ABSTRACT Renewable energy is potential alternative energy to replace the central role of fossil energy which has been going on since the early 20th century. The solar power plant is alternative energy, especially for households and industry, and can be designed as a hybrid power plant consisting of solar panels, batteries, an automatic transfer switch (ATS), and a grid. This research will focus on developing ATS based on a microcontroller. It functions to regulate the load supply automatically from the three sources of electrical energy, like solar panels, batteries, and grid while the microcontroller functions to monitor the transfer of power from the solar power plant to grid and voltage movements in the system so that current and voltage data can be recorded from time to time to improve system reliability, effectiveness, and efficiency of the tool. ATS components consist of MCB, magnetic contactor, timer H3CR, relay, 2000VA inverter, solar charge controller 100A, NodeMCU ESP8266 IoT, and battery 12V 100AH. This research is conducted in one year to produce ATS based on a microcontroller that can automatically regulate the supply of loads from the three sources of electrical energy with a good level of efficiency and stability.  Keywords: solar power plants, hybrid power plants, an automatic transfer switch.  ABSTRAK Energi baru terbarukan merupakan energi alternatif yang potensial untuk menggantikan peran sentral dari energi fosil yang telah berlangsung sejak awal abad ke 20. PLTS merupakan salah satu energi alternatif penyedia energi listrik untuk rumah tangga dan industri serta dapat dirancang sebagai sistem pembangkit listrik tenaga hibrid (PLTH) yang terdiri dari panel surya, baterai, sistem pengaturan beban atau ATS (automatic transfer switch) dan jaringan PLN. Peneltian difokuskan pada pengembangan sistem ATS berbasiskan mikrokontroler. ATS berfungsi untuk mengatur suplai beban secara otomatis dari ketiga sumber energi listrik yaitu panel surya, baterai dan PLN sedangkan mikrokontroler berfungsi memonitor perpindahan daya dari PLTS ke sumber PLN dan pergerakan tegangan pada sistem sehingga dapat dilakukan pencatatan data arus dan tegangan dari waktu ke waktu sehingga dapat meningkatkan keandalan sistem, efektifitas dan efisiensi alat. Komponen ATS terdiri dari MCB, magnetic contactor, timer H3CR, relay, inverter 2000VA, solar charge controller 100A, NodeMCU ESP8266 IoT, dan baterai 12V 100Ah. Penelitian ini akan dilakukan dalam periode satu tahun menghasilkan ATS berbasiskan mikrokontroler yang dapat mengatur suplai beban secara otomatis dari ketiga sumber energi listrik dengan tingkat efisiensi dan kestabilan yang baik. Tim penelitian ini tediri dari 3 orang dan berasal dari program studi teknik elektro, IT PLN.  Kata kunci: pembangkit listrik tenaga surya, pembangkit listrik tenaga hibrid, pengaturan suplai beban.


2018 ◽  
Vol 10 (3) ◽  
pp. 44-47
Author(s):  
Muhammad Anwar ◽  
Zulwisli Zulwisli

Solar Power Plants (PLTS) is a promising alternative in the provision of electrical energy. In this study built PLTS to drive the load of water pump. The performance of water pumps is tested under various weather conditions. Performed measurements of some important quantities such as voltage, current and timing of the use of the PLTS to drive the water pump. Maximum yield with a one-hour charge occurs in sunny weather conditions at 11-12 WIB. A one-hour charge can move a 75 watts water pump for two hours. Solar panels are also directed towards the sun position resulting in a 40% increase in power at 12-13 pm. Keywords : PLTS, Output Voltage, Output Current, Maximum Power.


Kilat ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 115-124
Author(s):  
Tri Joko Pramono ◽  
Erlina Erlina ◽  
Zainal Arifin ◽  
Jef Saragih

Solar Power Plant is one of the New Renewable Energy power plants. Solar panels can produce unlimited amounts of electrical energy directly taken from the sun, with no rotating parts and no fuel. In this study are optimize solar power plants using hybrid systems with electricity companies and the use of semi-transparent solar panels in high rise buildings to meet the burden of the building. The research will discussed about use of solar power plants using semi-transparent solar panels in multi-storey buildings. The solar panel used for the facade is a semi-transparent solar panel makes its function become two, that is to produce electrical energy as well as glass through which sunlight and can see the view outside the building without reducing the building's aesthetic value. In this study is the value of solar radiation taken from west is the lowest value in November 1.4 Kwh can produce energy PLTS 3,855 Kwh and the highest solar radiation in July amounted to 3.75 Kwh can produce energy PLTS 10.331 Kwh. From the utilization of this PLTS system, Performance Ratio of 85% was obtained using study of 36 panels on the 3rd to 5th floors, this system can be said to feasible.  


Author(s):  
I. R. Vashchyshak ◽  
V. S Tsykh

The urgency of the work is due to the feasibility of increasing the energy efficiency of solar power plants through the use of solar energy concentrators. Ways to improve the energy efficiency of solar panels using a sys-tem of directional mirrors, flat Fresnel lenses, spherical concentrators and trackers have been investigated. It is established that the most optimal way to improve the energy efficiency of solar panels is to use inexpensive track-ers with a simple design. The analysis of known types of solar panels, which differ in materials from which their elements are made, and the coefficients of efficiency – dependence of energy produced by a photocell on the intensity of solar radiation per unit of its surface has been carried out, and the type of solar panels by the criterion “price-quality” has been selected. A tracker design has been developed to track the angle of inclination of solar panels to increase efficiency. The electricity generated by the proposed solar power plant was calculated using an online calculator. It is projected to reduce losses when generating electricity for a given power plant due to the use of a tracker compared to a fixed power system, with the same number of solar panels. In order to reduce the cost of the tracker, it is suggested to orientate it to the south at once, and to change the inclination angles twice a year (in early April and late August). The energy efficiency of the power plant is calculated in two stages. At the first stage the amount of electricity from solar panels per year when adjusting only the angle of inclination of the panels to the south is calculated. At the second stage energy efficiency of the power plant is calculated taking into account the increase of energy efficiency of the solar power plant when using the tracker system. The calculated electricity generation of the proposed solar power plant with tracker confirmed the efficiency and feasibility of using the designed tracker system. The application of the designed tracker system allows to increase the energy efficiency of solar panels by an average of 25%.


Petir ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 119-127
Author(s):  
Hengki Sikumbang ◽  
Abdul Haris ◽  
Muhammad Jafar Elly

The problem with the condition of the Solar Power Plant is still not optimal due to position of the solar cells in generator is still static so that absorption of light is still not even though Hybrid technology is now available but cannot be optimized properly and still cannot be optimized implemented especially in small scale and remote areas. Another problem that needs attention is the continued operation of installed Solar Power Plants (SPPs), considering the installation and maintenance of the plant requires high investment costs because the installation of solar panels requires a large amount of land and costs besides requiring qualified technical personnel to handle problems and monitoring plant conditions are needed quickly and accurately. From the description of the problem, the first step is to identify the technology used in the factory, the second is the need to design a new system to be able to solve important problems in the plant and the third is to build a computerized system that uses the Hybrid Method on the plant used. is a combination of Artificial Intelligence and Data Mining Processes so that it can present accurate data so that it can help and analyze plant performance, monitor and control plants remotely quickly by using Web Control.


2021 ◽  
Vol 227 ◽  
pp. 05004
Author(s):  
Ilhomjon Musaev ◽  
Abdujalol Bokiev ◽  
Mukhtaram Botirova

The article considers the possibility of using the surface of various reservoirs characteristic of regions when allocating land for lowpower solar power plants in Uzbekistan. When implementing low-power solar power plants in Uzbekistan, a certain amount of land resources is required (for installing solar panels). From the point of view of respect for natural capital (saving land resources), the method of installing solar panels directly above the surface of water basins based on the corresponding maps of water basins is technically and economically effective. The methodological basis of the research is the results of researchers work on the problems of land relations and land management. In the research, a systematic approach to the analysis of land use has been chosen, in which a variety of tools were used to determine the essence of the analyzed phenomena, processes and patterns. In recent years, industry has been rapidly developing in rural areas of the Yangiyul district of Tashkent Province of Uzbekistan. In this regard, the problems of effective use of land resources, especially targeted use of irrigated land, has become urgent. This means that in the future there will be problems when allocating land for the installation of low-power solar power plants.


Sign in / Sign up

Export Citation Format

Share Document