KARBON LİF ÜRETİMİNDE POLİAKRİLONİTRİL ELYAFLARIN TERMAL OKSİDASYONU

Author(s):  
Mahbubor Rahman ◽  
Tuba DEMIREL ◽  
Ismail KARACAN

Thermal oxidation of polyacrylonitrile (PAN) fibers was accomplished at temperatures up to 250°C for different oxidation times. Chemical integration of PAN fibers with an aqueous solution of ammonium persulfate was performed before starting thermal oxidation. The results recommend that ammonium persulfate integration enhanced the oxidation reactions of the PAN fibers and resulting in enhanced thermal stability. Ammonium persulfate impregnation followed by the oxidation process in the air environment leads to significant deviations in the characteristics of PAN fibers. To perform structural characterization of the raw and ammonium persulfate (APS) incorporated and stabilized samples, XRD, IR-spectroscopy, TGA was executed in this study. Investigation of the XRD and infrared spectroscopy outcomes recommended quick aromatization reactions with growing oxidation periods. The TGA traces indicated a comparative enhancement in the thermal stability of the PAN fibers by the increased carbon yield with the rise of the oxidation time. The overall findings recommend that ammonium persulfate incorporation was very influential in stimulating the oxidation process.

e-Polymers ◽  
2012 ◽  
Vol 12 (1) ◽  
Author(s):  
Benhong Yang ◽  
Meng Li ◽  
Yun Wu ◽  
Kang Wang

AbstractSeveral inorganic/organic nanocomposites were prepared via solution-blending of cage-like octahexyl-polyhedral oligomeric silsesquioxane (Oh-POSS) with polystyrene (PS) in THF solvent. FTIR and 29Si-NMR were employed to characterize the structures of the nanocomposites. SEM pictures showed that the sample films were smooth and no POSS aggregation was observed when POSS content was lower than 1.0 wt%. TGA and DSC were used to investigate the thermal property. The results showed that the incorporation of nanosized Oh-POSS enhanced the thermal stability of PS with low POSS content. When 1.0 wt% of Oh-POSS was incorporated into PS matrix, the Tg and Td increased by 7.7 °C and 8.2 °C, respectively. However, higher POSS contents (>1.0 wt%) would deteriorate the thermal property of the nanocomposites due to the severe congregation of POSS..


2004 ◽  
Vol 457-460 ◽  
pp. 1357-1360 ◽  
Author(s):  
Antonella Poggi ◽  
Roberta Nipoti ◽  
Sandro Solmi ◽  
M. Bersani ◽  
L. Vanzetti

2012 ◽  
Vol 727-728 ◽  
pp. 1552-1556
Author(s):  
Renata Barbosa ◽  
Dayanne Diniz Souza ◽  
Edcleide Maria Araújo ◽  
Tomás Jefférson Alves de Mélo

Studies of degradation have verified that the decomposition of some quaternary ammonium salts can begin to be significant at the temperature of about 180 ° C and like most thermoplastics are processed at least around this temperature, the thermal stability of the salt in clay should always be considered. Some salts are more stable than others, being necessary to study the degradation mechanisms of each case. In this work, four quaternary ammonium salts were characterized by differential scanning calorimetry (DSC) and thermogravimetry (TG). The results of DSC and TG showed that the salts based chloride (Cl-) anion begin to degrade at similar temperatures, while the salt based bromide (Br-) anion degrades at higher temperature. Subsequently, a quaternary ammonium salt was chosen to be used in organoclays, depending on its chemical structure and its thermal behavior.


2001 ◽  
Vol 288 (1) ◽  
pp. 121-128 ◽  
Author(s):  
Serguei V. Kuznetsov ◽  
Olga M. Sidorkina ◽  
Jacques Laval ◽  
Anjum Ansari

2011 ◽  
Vol 197-198 ◽  
pp. 606-609 ◽  
Author(s):  
Ti Feng Jiao ◽  
Yuan Yuan Xing ◽  
Jing Xin Zhou ◽  
Wei Wang

Some functional luminol derivatives with aromatic substituted groups have been designed and synthesized from the reaction of the corresponding aromatic acyl chloride precursors with luminol. It has been found that depending on the size of aromatic groups, the formed luminol derivatives showed different properties, indicating distinct regulation of molecular skeletons. UV and IR data confirmed commonly the formation of imide group as well as aromatic segment in molecular structures. Thermal analysis showed that the thermal stability of luminol derivatives with p-phthaloyl segment was the highest in those derivatives. The difference of thermal stability is mainly attributed to the formation of imide group and aromatic substituent groups in molecular structure. The present results have demonstrated that the special properties of luminol derivatives can be turned by modifying molecular structures of objective compounds with proper substituted groups, which show potential application in functional material field and ECL sensor.


2021 ◽  
pp. 152808372110417
Author(s):  
Zhou Zhao ◽  
Ningning Tong ◽  
Hong Song ◽  
Yan Guo ◽  
Jinmei Wang

In this work, a phase-change energy storage nonwoven fabric was made of polyurethane phase-change material (PUPCM) by a non-woven melt-blown machine. Polyethylene glycol 2000 was used as the phase transition unit and diphenyl-methane-diisocyanate as the hard segment to prepare PUPCM. Thermal stability of the PUPCM was evaluated through thermal stability analysis. The performance of pristine PUPCM was determined by Fourier transform infrared spectroscopy and differential scanning calorimetry to analyze the spinning technology of spinning temperature and the stretching process. Phase-change energy storage nonwoven fabric (413.22 g/m2) was prepared, and the morphology, solid–solid exothermic phase transition, mechanical properties, and the structures were characterized. The enthalpy of solid–solid exothermic phase transition reached 60.17 mJ/mg (peaked at 23.14°C). The enthalpy of solid–solid endothermic phase transition reached 67.09 mJ/mg (peaked at 34.34°C). The strength and elongation of phase-change energy storage nonwoven fabric were found suitable for garments and tent fabrics.


2011 ◽  
Vol 183-185 ◽  
pp. 1812-1816
Author(s):  
Dan Wang ◽  
Zhan Qian Song ◽  
Shi Bin Shang ◽  
Zhan Jun Wang ◽  
Myoung Ku Lee

Novel kenaf-based superabsorbent polymers (SAPs) were prepared by grafting acrylic acid (AA) and acrylamide (AM) onto kenaf cellulose. Graft copolymerization was carried out in aqueous solution using N, N’-methylenebisacrylamide (NMBA) as crosslinking agent and sodium bisulfite (NaHSO3) and ammonium persulfate ((NH4)2S2O8) as initiator. The SAPs so obtained were examined by SEM. The absorbency of SAPs consists of different kenaf cellulose in deionized water, saline solutions and different pH value solutions were investigated.


1974 ◽  
Vol 1 (4) ◽  
pp. 579 ◽  
Author(s):  
S Leblova

Alcohol dehydrogenase isolated from broad bean was found to have a Km value of 1.0 × 1.0 -2 M, a pH optimum of 8.7 and a molecular weight of 60 000 � 5000. The enzyme lost 55 % of its activity after being heated at 55�C, and was totally inactivated at 70°C. Thermal stability of the enzyme was not enhanced by NAD+ or ethanol. The substrate specificity of the enzyme is reported. Cysteine and mercaptoethanol activated the enzyme, whilep-chloromercuribenzoate, Cu2+, Hg2+, B4O72- -, Zn2+ and EDTA inhibited it. The influence of ethanol, acetaldehyde and growth substances on alcohol dehydrogenase activity in germinating broad bean seeds and plant tissues was also studied.


Sign in / Sign up

Export Citation Format

Share Document