scholarly journals Development of Rice Husk and Egg Shell Fillers in Polymer Composites: A Review

Author(s):  
Anjana S ◽  
Dr. Shaji P Thomas

Natural fibers such as hemp, sisal, jute, cotton,flax and broom are the most commonly used fibers for the reinforcement of polymers. These bio fillers are used in polymeric compound because of its low cost and bio degradable nature. This review gives the information about bio fillers rice husk and egg shell used in polymer technology and importance of this bio fillers in science and technology area.

2015 ◽  
Vol 2015 ◽  
pp. 1-32 ◽  
Author(s):  
Reza Arjmandi ◽  
Azman Hassan ◽  
Khaliq Majeed ◽  
Zainoha Zakaria

Natural fibers from agricultural wastes are finding their importance in the polymer industry due to the many advantages such as their light weight, low cost and being environmentally friendly. Rice husk (RH) is a natural sheath that forms around rice grains during their growth. As a type of natural fiber obtained from agroindustrial waste, RH can be used as filler in composites materials in various polymer matrices. This review paper is aimed at highlighting previous works of RH filled polymer composites to provide information for applications and further research in this area. Based on the information gathered, application of RH filled composites as alternative materials in building and construction is highly plausible with both light weight and low cost being their main driving forces. However, further investigations on physical and chemical treatment to further improve the interfacial adhesion with polymeric matrix are needed as fiber-polymer interaction is crucial in determining the final composite properties. Better understanding on how the used polymer blends as the matrix and secondary fillers may affect the properties would provide interesting areas to be explored.


2019 ◽  
Vol 895 ◽  
pp. 76-82 ◽  
Author(s):  
B. Vinod ◽  
L.J. Sudev

In past few decades, natural fibers which are viable and abundant in nature are the emerging trends in material science as reinforcement for polymer matrix materials and they are the commute for the non-biodegradable, non-renewable and high-density synthetic fibers. Plant-based fibers such as banana, hemp, kenaf, PALF, jute, and coir has been used as reinforcement in a polymer matrix for the applications in consumer goods, furniture’s, civil and automotive structures and low-cost housing structures. The natural fibers used in this study are Hemp and Jute fibers which are finding increasing in the composite material as reinforcements. The main objective of the current work is to examine the mechanical properties of hybrid fibers (hemp and jute) reinforced epoxy composites under room temperature and at cryogenic temperature. From this study, it is clear that tensile, flexural and impact properties of polymer composites are greatly influenced by cryogenic temperature and its properties vary with respect to the extent of cryogenic treatment. The specimens are immersed in liquid nitrogen for the duration of 15, 30, 45 and 60mins and later it is subjected for tensile, flexural and impact properties. The maximum tensile strength of 21.13MPa, flexural strength of 51.95MPa and Impact strength of 8.935kJ/m2 is obtained for an untreated specimen and its value start to decrease as curing time increases. At cryogenic temperature, the material comes harder and loses its ductile property and become brittle due differ in thermal expansion coefficient of matrix and fiber material


2020 ◽  
Vol 9 (2) ◽  
pp. 1103-1110

There has been a growing interest to produce composite polymeric materialsusing natural fibers as reinforcement. Scientists prefer natural fiber as a reinforced material to make polymer composites due to their bio-degradability characteristics,strong mechanical properties, high specific strength, low cost, non-abrasiveand ecofriendly nature . This review presents the reported work on natural plant based fiber reinforced polymer composites with special reference to the type of natural fibers and host polymers. Various fiber treatments, which are carried out to improve the fiber– hostadhesion, improved mechanical properties that greatly increase the application of these polymer composites specially in automobile industries and bioapplications are highlighted.


Author(s):  
Nosa Idusuyi ◽  
Peter Ozaveshe Oviroh ◽  
Adetoye Henry Adekoya

Aluminium based metal matrix composites (MMCs) have received considerable attention in the last decade for its potential industrial applications. One of the challenges encountered using Aluminium based MMCs is understanding the influence of the reinforcement particles on the corrosion resistance and mechanical properties. In this study the corrosion behaviour and mechanical properties of Al6063 reinforced with egg shell ash and rice husk ash were investigated. Waste Egg Shell Ash (ESA) and Rice Husk Ash (RHA) 212 μm in size were used to produce the composites with 10 wt% of reinforcements via stir casting technique. The RHA and ESA were added in the ratios of 10:0, 7.5:2.5, 5:5, 2.5:7.5, 0:10. Unreinforced Al6063 was used as baseline material. Immersion tests, potentiodynamic polarization techniques, tensile tests, optical microscopy (OM) and scanning electron microscopy (SEM) were used to characterize the composites. The results showed that reinforcing with 7.5 wt% RHA + 2.5 wt% ESA provided the highest resistance to corrosion. Generally, a reduction in the corrosion rates were observed for the reinforced composites as the wt% of RHA increased. Porosity levels of the composites reduced with an increase in the percentage of ESA in the matrix. Microstructural characterization using SEM and OM revealed a distribution of pits on the composite surfaces which was more severe with increasing RHA percentage. The UTS (ultimate tensile stress) results revealed that the composite containing 10 wt% RHA had the maximum value of 161 MPa. The results demonstrate that rice husk ash and eggshell ash can be useful in producing low cost Aluminium composites with improved corrosion resistance and tensile properties.


Author(s):  
Hemant Patel ◽  
Ashish Parkhe ◽  
P.K. Shrama

To develop and commercialize materials containing vegetal fibers has grown in order to reduce environmental impact. Large amounts of lignocellulosic materials are generated around the world from several human activities and some process. Development of the Polymer Composites with natural fibers and fillers such as a sustainable alternative material for some applications, particularly in aerospace applications and automobile applications are being investigated. Natural fiber composites such as sisal, jute, hemp and coir polymer composites appear more attractive due to their higher specific strength, lightweight and biodegradability and low cost.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Obinna Emmanuel Ezenkwa ◽  
Azman Hassan ◽  
Sani Amril Samsudin

AbstractRice husk natural fiber remains a highly abundant, eco-friendly and low-cost reinforcement filler for plastic composites fabrication. Hampered by its low aspect ratio and incompatibility with non-polar polymers, its utilization in reinforcing polymer composites often results in decreased composite properties such as decreased tensile strength, impact strength, percentage elongation, and flexural strength. However, stiffness increases. Various surface treatment techniques such as mercerization, compatibilization, acetylation, electron beam irradiation and plasma surface modification have been employed to improve its compatibility with non-polar matrix polymers. This article critically reviews the influence of these surface modification techniques on the resulting composite properties. Based on the analysis of reinforcing efficiencies of these techniques, their strengths, weaknesses, opportunities, and threats, the authors, therefore, project plasma treatment as the most efficient and eco-friendly technique with prospects for high technological application of rice husk plastic composites.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1706
Author(s):  
Zacharias Viskadourakis ◽  
Argiri Drymiskianaki ◽  
Vassilis M. Papadakis ◽  
Ioanna Ioannou ◽  
Theodora Kyratsi ◽  
...  

In the current study, polymer-based composites, consisting of Acrylonitrile Butadiene Styrene (ABS) and Bismuth Antimony Telluride (BixSb2−xTe3), were produced using mechanical mixing and hot pressing. These composites were investigated regarding their electrical resistivity and Seebeck coefficient, with respect to Bi doping and BixSb2-xTe3 loading into the composite. Experimental results showed that their thermoelectric performance is comparable—or even superior, in some cases—to reported thermoelectric polymer composites that have been produced using other complex techniques. Consequently, mechanically mixed polymer-based thermoelectric materials could be an efficient method for low-cost and large-scale production of polymer composites for potential thermoelectric applications.


Nanoscale ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 2779-2786 ◽  
Author(s):  
Jing Li ◽  
Santiago Orrego ◽  
Junjie Pan ◽  
Peisheng He ◽  
Sung Hoon Kang

We report a facile sacrificial casting–etching method to synthesize nanoporous carbon nanotube/polymer composites for ultra-sensitive and low-cost piezoresistive pressure sensors.


Sign in / Sign up

Export Citation Format

Share Document