scholarly journals Motor Oil Viscosity Stratification in Friction Units of Marine Diesel Motors

2016 ◽  
Vol 13 (2) ◽  
pp. 200-208
Author(s):  
Sergey Viktorovich Sagin ◽  
Oleksandr Vladymyrovich Semenov
2021 ◽  
Author(s):  
Jose Caridad ◽  
Arthur Watson ◽  
Song Shang ◽  
Eric Nguyen ◽  
Gocha Chochua

Abstract Electric submersible pump (ESP) systems use thrust bearings in the seal section to handle the thrust generated by the pump stages. Thrust bearings are subjected to harsh operating conditions, including high loads, poor oil circulation, and motor oil viscosity degradation. A less-recognized issue is gas becoming centrifugally trapped under the thrust runner. The gas may be present because of incomplete purging of air during filling, permeation of well gas into the motor oil, or gradual gasification of motor oil at high temperatures. Because thrust bearings are such critical components, it is of interest to increase their reliability, which in turn will increase ESP life. A novel gas purging system (GPS) was designed to alleviate stressors on thrust bearings, including gas accumulation, viscosity deterioration and gasification at high temperature, and low working oil volume. GPS circulates oil along with any gas that accumulates under the thrust runner up to a quiet separation chamber. Degassed oil circulates back to the thrust bearing, while accumulated gas eventually purges to the wellbore through relief valves on subsequent on/off cycles. GPS also improves viscosity and reduces gasification by cooling the oil, and it provides a greater working volume of thrust bearing oil to reduce the effects of oil deterioration. This paper details the GPS design principles as well as the optimization of the different design parameters that affect its performance conducted via computational fluid dynamics (CFD). Observations captured on a test fixture built using the final configuration are also presented, validating the intended functionality.


Author(s):  
А.А. СИМДЯНКИН ◽  
И.А. УСПЕНСКИЙ ◽  
М.Н. СЛЮСАРЕВ

Проблема и цель. Целью настоящего исследования является оценка влияния частоты ультразвука на смазочные свойства моторных масел и износ узлов трения двигателей при ультразвуковой обработке масел. Методология. Предметом исследований является ультразвуковая обработка моторных масел и вызываемые ею изменения износа узлов трения. Были проведены следующие эксперименты: оценка влияния частоты ультразвука на изменение коэффициента поверхностного натяжения моторных масел при их ультразвуковой обработке; оценка влияния частоты ультразвуковой обработки смазки на износ образцов пар трения при износных испытаниях образцов на машине трения 2070 СМТ 1М. Обработка моторного масла ультразвуком проводилась с помощью экспериментального устройства для генерации ультразвука переменной частоты. Обработке подвергались моторные масла: масло моторное «LukoilDIESELOIL» 10W-40 минеральное; масло моторное «SHELL Helix HX7 Diesel» 10W-40 полусинтетическое; масло моторное «ZIC X7 Diesel» 10W-40 синтетическое. Результаты. Были получены расчетно-экспериментальные зависимости коэффициента поверхностного натяжения от частоты ультразвукового сигнала для минерального, полусинтетического и синтетического моторных масел, а также зависимости фактора износа образцов пар трения от частоты ультразвука длясинтетического моторного масла.Определен диапазон частот ультразвука (17-44 кГц), при котором ультразвуковая обработка синтетического моторного масла дает наибольшее снижение износа пар трения Заключение. На основании проведенных исследований рекомендуется проводить обработку моторного масла ультразвуком в диапазоне частот от 17 до 44 кГц. Рекомендуется также продолжение работ по доработке устройства для генерации ультразвука оптимальной частоты и адаптации его в систему смазки реальных дизельных автотракторных двигателей. Problem and purpose. The purpose of this study was to assess the efect of ultrasound frequency on lubricating properties of engine oils and the wear of friction units of engines when ultrasonic treatment of oils. Methodology. The subject of the research was the ultrasonic treatment of engine oils and the changes in the wear of friction units caused by it. The following experiments were carried out: evaluation of the efect of the ultrasound frequency on the change in the surface tension coefcient of motor oils when their ultrasonic treatment; evaluation of the efect of the frequency of ultrasonic treatment of the lubricant on the wear of samples of friction pairs during wear tests of samples on a 2070 SMT 1M friction machine. Ultrasonic treatment of engine oil was carried out using an experimental device for generating ultrasound of variable frequency. The following engine oils were processed: motor oil "Lukoil DIESEL OIL" 10W-40 mineral; motor oil "SHELL Helix HX7 Diesel" 10W-40 semi-synthetic and motor oil "ZIC X7 Diesel" 10W-40 synthetic. Results. Authors got calculated and experimental dependences of the surface tension coefcient on the frequency of an ultrasonic signal for mineral, semi-synthetic and synthetic motor oils, as well as the dependence of the wear factor of samples of friction pairs on the frequency of ultrasound for synthetic engine oil. The frequency range of ultrasound (17-44 kHz) was determined, in which the ultrasonic treatment of synthetic motor oil gave the greatest reduction in the wear of friction pairs. Conclusion. Based on the studies carried out, it is recommended to treat engine oil with ultrasound in the frequency range from 17 to 44 kHz. It is also recommended to continue work on improving the device for generating ultrasound of the optimal frequency and adapting it to the lubrication system of real diesel automotive engines.


Author(s):  
V.M. Abbasv ◽  
◽  
M.A. Najafova ◽  
Yu.A. Abdullayeva ◽  
S.F. Akhmedbekova ◽  
...  

The composition and paramagnetism of oil fractions (300-350oC), (350-400oC), (400-450oC), and (450-500oC) of West-Absheron oil were studied using IR, ESR spectroscopy and luminescence methods. In all these refineries, asphaltene radicals with a concentration of 1018spin/g are registered, which screen all paramagnetic particles present in the oil system. With the exception of the fraction (300-350oC), in which much lower than in the listed fractions, it was possible to register the spectra of metal oxides (DHwidth=117mtl, g=2.7), the spectra from aromatic hydrocarbon radicals (DНwidth=10mtl, g=2.4), which was also registered in the fr.(140-3200C) of the oil itself. The presence of these petroleum products greatly reduces the oil viscosity index. As a result of the cleaning of the latter with an ionic liquid and an adsorption method in the studied oil fractions were found in trace amounts. The increase in the viscosity index of the oil fr. (350-500oC) was increased only after the addition of a foreign Lubrizol additive concentrate. Thus, the SAE15W40 engine oil with a viscosity index of 101.2 and a low pour point (-30oC) was obtained, which is recommended as a motor oil for diesel engines.


Author(s):  
Liudmila Anatolievna Semeniuk ◽  
Maxim Igorevich Tarasov

The key directions of the oil aging process are closely interrelated with its fumes and this is once again confirmed by the motor experiment. The degree of oxidation of the engine oil subjected to identification by increasing the concentration of insoluble impurities identifies the thermo-oxidative destruction of the present hydrocarbons. The results of modeling the process of wear of parts of the cylinder-piston group of marine diesel are considered. Through the application of the theory of experiment planning, the range of minimum wear is revealed, the dependence is focused on the values of the quality indicators of the used fuels and lubricants, the engine boost and the amount of engine oil burn. The change in the values in the main directions of oil aging as a result of reducing its fumes was noted. There has been revealed engine oil burnout in which the operation of the diesel engine is accompanied by less carbon and varnish formation on its pistons and the wear rate of the elements of the cylinder-piston group, the engine oil being in excellent condition in terms of the composition of aging products. Oil aging rate is determined at each stage of trial, according to sample analysis. There is given the matrix of experiment planning, as well as results of its processing. There are established the equations usable in trunk diesel operation that help to analyze general and specific rate of motor oil ageing, the initial values being values of oil waste, properties of fuels and lubricants and engine forcing. Motor oil of М-14-Г2 grade (circulating system) has been recommended to use for efficient and durable operation of ship diesels with average and low boost. For high powered engines operating on deep refining fuels it is possible to use the following oil grades: М-14-Д2 (cl 20) и М-14-Д2 (cl 30) with high neutralizing and motor qualities.


2017 ◽  
Vol 69 (5) ◽  
pp. 750-753
Author(s):  
Rathesan Ravendran ◽  
Peter Jensen ◽  
Jesper de Claville Christiansen ◽  
Benny Endelt ◽  
Erik Appel Jensen

Purpose The purpose of this study is to investigate the rheological behaviour of commercial lubrication oils used for cylinder lubrication in two-stroke marine diesel engines. Furthermore, it is of interest to investigate whether the viscosity of lubrication oils is affected by different levels of alkalinity. Design/methodology/approach Viscosity measurements are performed using both rotational and capillary rheometry. It was possible to measure oil viscosity in the shear rate from 0.1 to 3,000 s−1 using rotational rheometry, whereas capillary rheometry allowed measurements in higher shear rates from 5 × 105 to 1.3 × 106 s−1 at 50°C. Findings The viscosity measurements show that the studied lubrication oils behave as a Newtonian fluid and that the viscosities are insensitive to the level of alkalinity. Furthermore, the viscosity/temperature dependency for the lubrication oils was found to fit the Arrhenius model. Originality/value This study presents useful information about the rheological behaviour of lubrication oils, more precisely how the oil properties are affected by shear rate, temperature and level of alkalinity. The value of this research is considered to be important for designing two-stroke diesel engines and cylinder lubrication systems.


Sign in / Sign up

Export Citation Format

Share Document