Effect of Pulsating Circular Hot Air Jet Frequencies on Local and Average Nusselt Number

2008 ◽  
Vol 1 (1) ◽  
pp. 57-61 ◽  
Author(s):  
Rozli Zulkifli ◽  
Kamaruzzaman Sopian ◽  
Shahrir Abdullah ◽  
Mohd Sobri Takriff
Volume 1 ◽  
2004 ◽  
Author(s):  
D. P. Mishra ◽  
D. Mishra

An experimental investigation of the impinging jet cooling from a heated flat plate has been carried out for several Reynolds numbers (Re) and nozzle to plate distances. The present results indicate that the maximum heat transfer occurs from the heated plate at stagnation point and decreases with radial distances for all cases. The maximum value of the stagnation as well as average Nusselt number is found to occur at separation distance, H/D = 6.0 for Re = 55000. An attempt is also made to study effects of nozzle exit configuration on the heat transfer using a sharp edged orifice for same set of Reynolds numbers and nozzle to plate distance. The stagnation Nusselt numbers of sharp orifice jets are found to be enhanced by around 16–21.4% in comparison to that of square edged orifice. However, the enhancement in the average Nusselt number of sharp orifice is found to be in the range of 7–18.9% as compared to the square edged orifice. The maximum enhancement of 18.9% in average Nu is achieved for Re = 55 000 at H/D = 6. Two separate correlations in terms of Nuo, Re, H/D for both square and sharp edged orifice are obtained which will be useful for designing impinging cooling system.


2021 ◽  
Vol 37 ◽  
pp. 467-483
Author(s):  
Jen-Chieh Cheng ◽  
You-Ming Chen

ABSTRACT This research performs a three-dimensional simulation to investigate the fluid flow and heat transfer characteristics for hot-air jets impinging on the wing leading-edge surface. Both the periodic model and the whole model are proposed to examine the thermal anti-icing performance for hot air ejecting from a piccolo tube onto the impinging surface. The results show that, for the periodic model, the enhancement of the average Nusselt number can be up to 94.4%, and the enhancement of the average heat flux is up to 29.7% for 100 ≦ uj ≦ 350 m/s and 300 ≦ Tj ≦ 550 K when compared with the results of the basic case of uj = 200 m/s and Tj = 450 K. The maximum enhancement of the $\overline {Nu} $ is 62.3% as the spacing decreases from Sn = 8 to Sn = 4 and the optimum Numax and $\overline {Nu} $ occur at Si = 5 and Si = 6 for the single-array holes with 3 ≦ Si ≦ 7 and 4 ≦ Sn ≦ 8. In addition, the θh for maximum $\overline {{{Nu}}} $ is 10° and the maximum enhancement of the $\overline {{{Nu}}} $ is ∼15.7% for double-array holes and staggered-array holes as compared with single-array holes. In addition, the nonuniformity of Nusselt number and heat flux distributions are significantly improved. For the whole model, the maximum enhancement of the average Nusselt number is ∼7.5% and the optimum configuration is θh = 40°, for cases with La = 60, Dp = 8, $\dot{m}$ = 0.15 kg/s, Si = 6, 1 ≦ Nh ≦ 5, 10 ≦ Sn ≦ 30 and 10° ≦ θh ≦ 60°.


Author(s):  
Jaspinder Kaur ◽  
Roderick Melnik ◽  
Anurag Kumar Tiwari

Abstract In this present work, forced convection heat transfer from a heated blunt-headed cylinder in power-law fluids has been investigated numerically over the range of parameters, namely, Reynolds number (Re): 1–40, Prandtl number (Pr): 10–100 and power-law index (n): 0.3–1.8. The results are expressed in terms of local parameters, like streamline, isotherm, pressure coefficient, and local Nusselt number and global parameters, like wake length, drag coefficient, and average Nusselt number. The length of the recirculation zone on the rear side of the cylinder increases with the increasing value of Re and n. The effect of the total drag coefficient acting on the cylinder is seen to be higher at the low value of Re and its effect significant in shear-thinning fluids (n < 1). On the heat transfer aspect, the rate of heat transfer in fluids is increased by increasing the value of Re and Pr. The effect of heat transfer is enhanced in shear-thinning fluids up to ∼ 40% and it impedes it’s to ∼20% shear-thickening fluids. In the end, the numerical results of the total drag coefficient and average Nusselt number (in terms of J H −factor) have been correlated by simple expression to estimate the intermediate value for the new application.


Author(s):  
Salaika Parvin ◽  
Nepal Chandra Roy ◽  
Litan Kumar Saha ◽  
Sadia Siddiqa

A numerical study is performed to investigate nanofluids' flow field and heat transfer characteristics between the domain bounded by a square and a wavy cylinder. The left and right walls of the cavity are at constant low temperature while its other adjacent walls are insulated. The convective phenomena take place due to the higher temperature of the inner corrugated surface. Super elliptic functions are used to transform the governing equations of the classical rectangular enclosure into a system of equations valid for concentric cylinders. The resulting equations are solved iteratively with the implicit finite difference method. Parametric results are presented in terms of streamlines, isotherms, local and average Nusselt numbers for a wide range of scaled parameters such as nanoparticles concentration, Rayleigh number, and aspect ratio. Several correlations have been deduced at the inner and outer surface of the cylinders for the average Nusselt number, which gives a good agreement when compared against the numerical results. The strength of the streamlines increases significantly due to an increase in the aspect ratio of the inner cylinder and the Rayleigh number. As the concentration of nanoparticles increases, the average Nusselt number at the internal and external cylinders becomes stronger. In addition, the average Nusselt number for the entire Rayleigh number range gets enhanced when plotted against the volume fraction of the nanofluid.


Author(s):  
Ali Rahimi Gheynani ◽  
Omid Ali Akbari ◽  
Majid Zarringhalam ◽  
Gholamreza Ahmadi Sheikh Shabani ◽  
Abdulwahab A. Alnaqi ◽  
...  

Purpose Although many studies have been conducted on the nanofluid flow in microtubes, this paper, for the first time, aims to investigate the effects of nanoparticle diameter and concentration on the velocity and temperature fields of turbulent non-Newtonian Carboxymethylcellulose (CMC)/copper oxide (CuO) nanofluid in a three-dimensional microtube. Modeling has been done using low- and high-Reynolds turbulent models. CMC/CuO was modeled using power law non-Newtonian model. The authors obtained interesting results, which can be helpful for engineers and researchers that work on cooling of electronic devices such as LED, VLSI circuits and MEMS, as well as similar devices. Design/methodology/approach Present numerical simulation was performed with finite volume method. For obtaining higher accuracy in the numerical solving procedure, second-order upwind discretization and SIMPLEC algorithm were used. For all Reynolds numbers and volume fractions, a maximum residual of 10−6 is considered for saving computer memory usage and the time for the numerical solving procedure. Findings In constant Reynolds number and by decreasing the diameter of nanoparticles, the convection heat transfer coefficient increases. In Reynolds numbers of 2,500, 4,500 and 6,000, using nanoparticles with the diameter of 25 nm compared with 50 nm causes 0.34 per cent enhancement of convection heat transfer coefficient and Nusselt number. Also, in Reynolds number of 2,500, by increasing the concentration of nanoparticles with the diameter of 25 nm from 0.5 to 1 per cent, the average Nusselt number increases by almost 0.1 per cent. Similarly, In Reynolds numbers of 4,500 and 6,000, the average Nusselt number increases by 1.8 per cent. Research limitations/implications The numerical simulation was carried out for three nanoparticle diameters of 25, 50 and 100 nm with three Reynolds numbers of 2,500, 4,500 and 6,000. Constant heat flux is on the channel, and the inlet fluid becomes heated and exists from it. Practical implications The authors obtained interesting results, which can be helpful for engineers and researchers that work on cooling of electronic devices such as LED, VLSI circuits and MEMS, as well as similar devices. Originality/value This manuscript is an original work, has not been published and is not under consideration for publication elsewhere. About the competing interests, the authors declare that they have no competing interests.


2003 ◽  
Vol 125 (1) ◽  
pp. 104-113 ◽  
Author(s):  
Chang-Yuan Liu ◽  
Ying-Huei Hung

Both experimental and theoretical investigations on the heat transfer and flow friction characteristics of compact cold plates have been performed. From the results, the local and average temperature rises on the cold plate surface increase with increasing chip heat flux or decreasing air mass flow rate. Besides, the effect of chip heat flux on the thermal resistance of cold plate is insignificant; while the thermal resistance of cold plate decreases with increasing air mass flow rate. Three empirical correlations of thermal resistance in terms of air mass flow rate with a power of −0.228 are presented. As for average Nusselt number, the effect of chip heat flux on the average Nusselt number is insignificant; while the average Nusselt number of the cold plate increases with increasing Reynolds number. An empirical relationship between Nu¯cp and Re can be correlated. In the flow frictional aspect, the overall pressure drop of the cold plate increases with increasing air mass flow rate; while it is insignificantly affected by chip heat flux. An empirical correlation of the overall pressure drop in terms of air mass flow rate with a power of 1.265 is presented. Finally, both heat transfer performance factor “j” and pumping power factor “f” decrease with increasing Reynolds number in a power of 0.805; while they are independent of chip heat flux. The Colburn analogy can be adequately employed in the study.


1991 ◽  
Vol 113 (4) ◽  
pp. 858-864 ◽  
Author(s):  
C. Gau ◽  
C. M. Chung

Experiments are performed to study surface curvature effects on the impingement cooling flow and the heat transfer processes over a concave and a convex surface. A single air jet issuing from different size slots continuously impinges normally on the concave side or the convexside of a heated semicylindrical surface. An electrical resistance wire is used to generate smoke, which allows us to visualize the impinging flow structure. The local heat transfer Nusselt number along the surfaces is measured. For impingement on a convex surface, three-dimensional counterrotating vortices on the stagnation point are initiated, which result in the enhancement of the heat transfer process. For impingement on a concave surface, the heat transfer Nusselt number increases with increasing surface curvature, which suggests the initiation of Taylor–Go¨rtler vortices along the surface. In the experiment, the Reynolds number ranges from 6000 to 350,000, the slot-to-plate spacing from 2 to 16, and the diameter-to-slot-width ratio D/b from 8 to 45.7. Correlations of both the stagnation point and the average Nusselt number over the curved surface, which account for the surface curvature effect, are presented.


1970 ◽  
Vol 39 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Sumon Saha ◽  
Noman Hasan ◽  
Chowdhury Md Feroz

A numerical study has been carried out for laminar natural convection heat transfer within a two-dimensional modified square enclosure having a triangular roof. The vertical sidewalls are differentially heated considering a constant flux heat source strip is flush mounted with the left wall. The opposite wall is considered isothermal having a temperature of the surrounding fluid. The rest of the walls are adiabatic. Air is considered as the fluid inside the enclosure. The solution has been carried out on the basis of finite element analysis by a non-linear parametric solver to examine the heat transfer and fluid flow characteristics. Different heights of the triangular roof have been considered for the present analysis. Fluid flow fields and isotherm patterns and the average Nusselt number are presented for the Rayleigh numbers ranging from 103 to 106 in order to show the effects of these governing parameters. The average Nusselt number computed for the case of isoflux heating is also compared with the case of isothermal heating as available in the literature. The outcome of the present investigation shows that the convective phenomenon is greatly influenced by the inclined roof height. Keywords: Natural convection, triangular roof, Rayleigh number, isoflux heating. Doi:10.3329/jme.v39i1.1826 Journal of Mechanical Engineering, vol. ME39, No. 1, June 2008 1-7


2018 ◽  
Vol 22 (6 Part A) ◽  
pp. 2503-2514 ◽  
Author(s):  
Esfe Hemmat ◽  
Arani Abbasian ◽  
Wei-Mon Yan ◽  
Alireza Aghaie ◽  
Masoud Afrand ◽  
...  

The present study aims to evaluate the mixed convection flow and heat transfer of functionalized DWCNT/water nanofluids with variable properties in a cavity having hot baffles. The investigation is performed at different nanoparticles volume fraction including 0, 0.0002, 0.001, 0.002, and 0.004, Richardson numbers ranging from 0.01 to 100, inclination angles ranging from 0 to 60? and at constant Grashof number of 104. The results presented as streamlines and isotherms plot and Nusselt number diagrams. According to the finding with increasing nanoparticles volume fraction and distance between the left hot baffles of nanoparticles average Nusselt number enhances for all considered Richardson numbers and cavity inclination angles. Also with increasing Richardson number, the rate of changes of average Nusselt number increase with increasing distance between the left hot baffles. For example, at Richardson number of 0.01, by increasing L1 from 0.4 to 0.6, the average Nusselt number increases 7%; while for similar situation at Richardson number of 0.1, 1.0, and 10, the average Nusselt number increases, respectively, 17%, 24%, and 26%. At all Richardson numbers, the maximum value of average Nusselt number is achieved for a minimum length of left baffles. <br><br><font color="red"><b> This article has been corrected. Link to the correction <u><a href="http://dx.doi.org/10.2298/TSCI190203032E">10.2298/TSCI190203032E</a><u></b></font>


Sign in / Sign up

Export Citation Format

Share Document