scholarly journals A CO-OPERATIVE METHODOLOGY TO ESTIMATE CAR FUEL CONSUMPTION BY USING SMARTPHONE SENSORS

Transport ◽  
2015 ◽  
Vol 30 (3) ◽  
pp. 307-311 ◽  
Author(s):  
Vittorio Astarita ◽  
Giuseppe Guido ◽  
Domenico Mongelli ◽  
Vincenzo Pasquale Giofrè

The European Commission has recently promoted research programs aimed at finding solutions to the ever more compelling problem of air pollution from road vehicles and has also indicated a better sustainability among the possible impacts of co-operative Intelligent Transportation Systems. In fact, many practical solutions can be developed that allow drivers and management to optimise resources and to contain costs and the emissions of pollutants by applying communication systems between vehicles (Vehicle-to-Vehicle – V2V) and between vehicles and infrastructure (Vehicle-to-Infrastructure – V2I). Along this mainstream this paper present a co-operative system which offer drivers the ability to manage their consumption and driving style, suggesting corrections to the usually adopted behaviour. The new contribution of this paper is both the co-operative approach between drivers to achieve a common goal of a better common energy consumption strategy and a methodology to estimate fuel consumption just by using Satellite data obtained from a simple smartphone. Since the fuel consumption has to be evaluated with regards to the specific vehicle type the system is based also on crowdsourcing of the specific vehicle consumption performances. The paper describes a system that gathers data on fuel consumption from the co-operating drivers that can build together the data set necessary to the system itself once they accept this paper paradigm: crowd sourced co-operation for a smarter and more sustainable transport system.

Author(s):  
Xiaobo Long ◽  
Biplab Sikdar

Numerous efforts are currently under progress to enhance the safety and efficiency of vehicular traffic through intelligent transportation systems. In addition, the growing demand for access to data and information from human users on the go has created the need for advanced vehicle-to-vehicle and vehicleto- roadside communication systems capable of high data rates and amenable to high degrees of node mobility. Vehicular communications and networks are expected to be used for a number of purposes such as for enabling mobile users to transfer data and information from other networks such as the Internet and also for implementing services such as Intersection Decision Systems (IDS), Automated Highway Systems (AHS), and Advanced Vehicle Safety Systems (AVS). In this chapter the authors describe medium access control (MAC) and routing protocols for vehicular networks and the various factors that affect their design and performance.


Author(s):  
إسراء عصام بن موسى ◽  
عبدالسلام صالح الراشدي

Vehicular Ad-hoc Network (VANET) becomes one of the most popular modern technologies these days, due to its contribution to the development and modernization of Intelligent Transportation Systems (ITS). The primary goal of these networks is to provide safety and comfort for drivers and passengers in roads. There are many types of VANET that are used in ITS, in this paper, we particularly focus on the Vehicle to Vehicle communication (V2V), which each vehicle can exchange information to inform drivers of other vehicles about the current state of the road flow, in the event of any emergency to avoid accidents, and reduce congestion on roads. We proposed V2V using Wi-Fi (wireless fidelity); the reason of its unique characteristics that distinguish it from other types. There are many difficulties and the challenges in implementing most types of V2V, and the reason is due to the lack of devices and equipment needed for real implementation. To prove the possibility of applying this type in real life, we made a prototype contains a modified toy car, a 12-volt power supply, sensors, visual, audible alarm, a visual “LED” devices, and finally a 12-volt DC relay unit. As a conclusion, the proposed implementation in spite of minimal requirements and use simple equipment, we have achieved the most important main objectives of the paper: preventing vehicles from collision, early warning, and avoiding congestion on the roads.


Robotica ◽  
2009 ◽  
Vol 28 (5) ◽  
pp. 765-779 ◽  
Author(s):  
S. Álvarez ◽  
M. Á. Sotelo ◽  
M. Ocaña ◽  
D. F. Llorca ◽  
I. Parra ◽  
...  

SUMMARYThis paper describes a vehicle detection system based on support vector machine (SVM) and monocular vision. The final goal is to provide vehicle-to-vehicle time gap for automatic cruise control (ACC) applications in the framework of intelligent transportation systems (ITS). The challenge is to use a single camera as input, in order to achieve a low cost final system that meets the requirements needed to undertake serial production in automotive industry. The basic feature of the detected objects are first located in the image using vision and then combined with a SVM-based classifier. An intelligent learning approach is proposed in order to better deal with objects variability, illumination conditions, partial occlusions and rotations. A large database containing thousands of object examples extracted from real road scenes has been created for learning purposes. The classifier is trained using SVM in order to be able to classify vehicles, including trucks. In addition, the vehicle detection system described in this paper provides early detection of passing cars and assigns lane to target vehicles. In the paper, we present and discuss the results achieved up to date in real traffic conditions.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yuan-yuan Song ◽  
En-jian Yao ◽  
Ting Zuo ◽  
Zhi-feng Lang

Road transportation is a major fuel consumer and greenhouse gas emitter. Recently, the intelligent transportation systems (ITSs) technologies, which can improve traffic flow and safety, have been developed to reduce the fuel consumption and vehicle emissions. Emission and fuel consumption estimation models play a key role in the evaluation of ITS technologies. Based on the influence analysis of driving parameters on vehicle emissions, this paper establishes a set of mesoscopic vehicle emission and fuel consumption models using the real-world vehicle operation and emission data. The results demonstrate that these models are more appropriate to evaluate the environmental effectiveness of ITS strategies with enough estimation accuracy.


Author(s):  
Qingyan Yang ◽  
Virginia Sisiopiku ◽  
Jim A. Arnold ◽  
Paul Pisano ◽  
Gary G. Nelson

Rural transportation systems have different features and needs than their urban counterparts. To address safety and efficiency concerns in rural environments, advanced rural transportation systems (ARTS) test and deploy appropriate intelligent transportation systems (ITS) technologies, many of which require communication support. However, wireless communication systems that currently serve urban areas often are not available or suitable in rural environments. Thus, a need exists to identify communication solutions that are likely to address successfully the needs and features of ARTS applications. Current and emerging wireless communications systems and technologies have been systematically assessed with respect to rural ITS applications. Wireless communication functions associated with rural ITS functions are first identified. Then requirements for applicable communication technologies in the rural environment are defined. Existing and emerging wireless communication systems and technologies are reviewed and evaluated by a systematic process of assessing rural ITS wireless solutions. Finally, recommendations for future research and operational tests are offered. The analysis results are expected to benefit rural ITS planners by identifying suitable wireless solutions for different rural contexts.


Author(s):  
Elise Miller-Hooks ◽  
Baiyu Yang

Mobile communication systems coupled with intelligent transportation systems technologies can permit information service providers to supply real-time routing instructions to suitably equipped vehicles as real-time travel times are received. Simply considering current conditions in updating routing decisions, however, may lead to suboptimal path choices, because future travel conditions likely will differ from that currently observed. Even with perfect and continuously updated information about current conditions, future travel times can be known a priori with uncertainty at best. Further, in congested transportation systems, conditions vary over time as recurrent congestion may change with a foreseeable pattern during peak driving hours. It is postulated that better, more robust routing instructions can be provided by explicitly accounting for this inherent stochastic and dynamic nature of future travel conditions in generating the routing instructions. It is further hypothesized that nearly equally good routing instructions can be provided by collecting real-time information from only a small neighborhood within the transportation system as from the entire system. Extensive numerical experiments were conducted to assess the validity of these two hypotheses.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Wenyi Jiang ◽  
Ke Guan ◽  
Zhangdui Zhong ◽  
Bo Ai ◽  
Ruisi He ◽  
...  

The need for improving the safety and the efficiency of transportation systems has become of extreme importance. In this regard, the concept of vehicle-to-X (V2X) communication has been introduced with the purpose of providing wireless communication technology in vehicular networks. Not like the traditional views, the wide-sense V2X (WSV2X) communications in this paper are defined by including not only vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications but also train-to-X (T2X) communications constituted of train-to-train (T2T) and train-to-infrastructure (T2I) communications. All the information related to the wide-sense V2X channels, such as the standardization, scenarios, characters, and modeling philosophies, is organized and summarized to form the comprehensive understanding of the development of the WSV2X channels.


2021 ◽  
Author(s):  
Manimegaai C T ◽  
kali muthu ◽  
sabitha gauni

Abstract These days population are taking a risk in their drive and in no time dangers are happening, and loosing lives by doing tiny wrongs when on drive near restricted zones. To escape these accidents to make population risk free traffic department are introducing signboards. But then again with the ignorance of the people, dangers are happening again, so “Li-Fi technology” is being used here to decrease the count of accidents. The transmission takes place with the help of LEDs (Light Emitting Diodes).Text, audio and video can also be transmitted with the help of this li-fi. The transmission is done when the light turns on and off. When this is compared to Wi-Fi it has many advantages like this light is not harmful to human body. The Transmission takes place in the form of zeroes and ones. Therefore to avoid accidents we suggested an intelligent, adaptable, and efficient model that utilizes Machine Learning techniques. The proposed system helps in vehicle to vehicle and vehicle to Infrastructure communication systems.


Sign in / Sign up

Export Citation Format

Share Document