Serviceability Limit Verification for Structural Elements of Steel Hall

Author(s):  
Izabela Skrzypczak ◽  
Grzegorz Oleniacz

In recent years, the importance of assessing structural reliability has increased significantly. This is confirmed by the recommendations of the PN-EN 1990 standard. This standard gives the principles and requirements to ensure the safety, serviceability and durability of the structure. It sets out the basis for calculation and verification of the structure and provides guidance to ensure their reliability. Reliability of structure is its ability to meet specific design requirements, taking into account the planned period of use. The planned period of use should be understood as a time period approved in the project, in which the structure or part of it is to be used for their intended purpose, without the need for major repairs. Typically, reliability is expressed by probabilistic measures as indicator of reliability or probability of failure. The aim of this study is to present the results of of roof girder deflection surveying and modeling their reliability. A general algorithm for determining the value of the reliability indicator for the bending steel beam with FORM method will be presented. Verification of the differences between the indicator of reliability obtained by simplified probabilistic methods and compare them with the values recommended in the Eurocode 0 standard will be also shown. For the analyzed steel beam the serviceability limit states were considered.

2020 ◽  
Vol 92 (6) ◽  
pp. 51-58
Author(s):  
S.A. SOLOVYEV ◽  

The article describes a method for reliability (probability of non-failure) analysis of structural elements based on p-boxes. An algorithm for constructing two p-blocks is shown. First p-box is used in the absence of information about the probability distribution shape of a random variable. Second p-box is used for a certain probability distribution function but with inaccurate (interval) function parameters. The algorithm for reliability analysis is presented on a numerical example of the reliability analysis for a flexural wooden beam by wood strength criterion. The result of the reliability analysis is an interval of the non-failure probability boundaries. Recommendations are given for narrowing the reliability boundaries which can reduce epistemic uncertainty. On the basis of the proposed approach, particular methods for reliability analysis for any structural elements can be developed. Design equations are given for a comprehensive assessment of the structural element reliability as a system taking into account all the criteria of limit states.


10.14311/382 ◽  
2003 ◽  
Vol 43 (1) ◽  
Author(s):  
M. Holický ◽  
J. Marková

The basic European standard for design of buildings and other engineering works, EN 1990 "Basis of structural design", provides alternative design procedures, for which national choice is allowed. One of the most important questions concerns three fundamental combinations of actions for persistent and transient design situations in the Ultimate limit states. Simple examples of reinforced concrete elements show, that the alternative load combinations may lead to considerably different reliability levels. Probabilistic methods of structural reliability theory are used to identify characteristic features of each combination and to formulate recommendations. However, further calibration studies are urgently needed in order to prepare National annexes to EN 1990 on time.


Author(s):  
Hammam Zeitoun ◽  
Maša Branković ◽  
Edwin Shim ◽  
EuJeen Chin ◽  
Benjamin Anderson

Subsea pipelines lateral buckling design has significantly evolved over the last years as more pipeline projects have moved into more challenging environments and into high temperature / high pressure (HT/HP) design application. Knowledge and understanding of pipeline lateral buckling has improved with design application resulting in refined and enhanced design approaches. Using current design approaches, it is now quite acceptable to control lateral buckle formation along the pipeline by using buckle triggers or to allow uncontrolled lateral buckles, provided that the various design limit states are satisfied. A number of design methodologies can be used to check the acceptability of uncontrolled buckling or to design for controlled buckling including deterministic, probabilistic buckle formation and full Structural Reliability Assessment (SRA) methods. Using SRA or probabilistic methods is usually an attractive design option as lateral buckling design involves dealing with a large number of uncertainties and variation in design parameters. These methods help to ensure the reliability of the proposed buckle initiation scheme. However, the use of these methods is also associated with a number of challenges such as the need to identify key parameters influencing the design and quantifying their uncertainties. Deterministic design approaches on the other hand are simpler to apply. However, they do not provide means to quantify the reliability of the proposed buckling scheme or the design risks. The choice of input parameters in a deterministic design is also relatively subjective which can possibly result in an overly conservative or unconservative design solution depending on the adopted design approach, selected design parameters and pipeline system being considered. Design guidelines and recommended practices such as SAFEBUCK (20) offer comprehensive guidelines to design for lateral buckling. However when faced with a range of complex variables, the designer needs to be aware of the effect of these parameters on the overall design. This paper describes the application of Deterministic and Probabilistic design approaches in lateral buckling design. The paper starts by describing these approaches, their advantages and limitations. The paper then explores a number of key uncertainties and variation in design parameters that the designer is faced with and its effect on the pipeline response.


2016 ◽  
Vol 36 (1) ◽  
pp. 18-25
Author(s):  
EN Ogork ◽  
AK Nakore

This paper presents the structural reliability assessment of a two span timber floor of strength class D40 designed in accordance with Eurocode 5 (2004).  The Structural analysis and design of the timber floor system was carried out using deterministic approach, considering both ultimate and serviceability limit states. Reliability analysis of the floor structural elements to ascertain its level of safety was carried out using first order reliability method (FORM) for the four modes of failure of bending shear, bearing and deflection. The reliability analysis involved investigation of the effects of variation of the applied dead to live load ratio and the cross sectional parameters of the floor. The results revealed that the deterministic design is satisfactory as limiting stresses and deflection were not exceeded. The primary floor joists had safety indices in shear and bending of 1.2 to 2.8 with decrease in dead to live load ratio and were below the recommended safety index of 3.8 specified in joint committee on structural safety (JCSS). The timber floor structural elements are more reliable in bearing, shear and deflection and critical in bending mode of failure. The section depth and span of floor elements are more sensitive in bending and deflection modes than shear and bearing modes. http://dx.doi.org/10.4314/njt.v36i1.3


10.14311/266 ◽  
2001 ◽  
Vol 41 (4-5) ◽  
Author(s):  
J. Marková ◽  
M. Holický

Theory of structural reliability enables comprehensive analysis of structural elements with respect to various limit states, and provides valuable insights into the methodology of applied standards. In addition to reliability analysis of the structural element, a new concept of the credibility of theoretical models used to calculate the design value of basic variables is introduced. The presented example of structural verification for limit states of cracking shows that the credibility of commonly applied formulas and reliability of a reinforced concrete slab have a great scatter and are in some cases inadequate.


AI and Ethics ◽  
2021 ◽  
Author(s):  
Steven Umbrello ◽  
Ibo van de Poel

AbstractValue sensitive design (VSD) is an established method for integrating values into technical design. It has been applied to different technologies and, more recently, to artificial intelligence (AI). We argue that AI poses a number of challenges specific to VSD that require a somewhat modified VSD approach. Machine learning (ML), in particular, poses two challenges. First, humans may not understand how an AI system learns certain things. This requires paying attention to values such as transparency, explicability, and accountability. Second, ML may lead to AI systems adapting in ways that ‘disembody’ the values embedded in them. To address this, we propose a threefold modified VSD approach: (1) integrating a known set of VSD principles (AI4SG) as design norms from which more specific design requirements can be derived; (2) distinguishing between values that are promoted and respected by the design to ensure outcomes that not only do no harm but also contribute to good, and (3) extending the VSD process to encompass the whole life cycle of an AI technology to monitor unintended value consequences and redesign as needed. We illustrate our VSD for AI approach with an example use case of a SARS-CoV-2 contact tracing app.


Author(s):  
Eric Brehm ◽  
Robert Hertle ◽  
Markus Wetzel

In common structural design, random variables, such as material strength or loads, are represented by fixed numbers defined in design codes. This is also referred to as deterministic design. Addressing the random character of these variables directly, the probabilistic design procedure allows the determination of the probability of exceeding a defined limit state. This probability is referred to as failure probability. From there, the structural reliability, representing the survival probability, can be determined. Structural reliability thus is a property of a structure or structural member, depending on the relevant limit states, failure modes and basic variables. This is the basis for the determination of partial safety factors which are, for sake of a simpler design, applied within deterministic design procedures. In addition to the basic variables in terms of material and loads, further basic variables representing the structural model have to be considered. These depend strongly on the experience of the design engineer and the level of detailing of the model. However, in the clear majority of cases [1] failure does not occur due to unexpectedly high or low values of loads or material strength. The most common reasons for failure are human errors in design and execution. This paper will provide practical examples of original designs affected by human error and will assess the impact on structural reliability.


2014 ◽  
Vol 633-634 ◽  
pp. 1140-1147
Author(s):  
Vladimir Alekseevich Sokolov

The article suggests an approach to determine structural elements technical condition, based on the mathematical probabilistic apparatus of technical diagnostics. Diagnostics are performed using probabilistic methods of complex technical systems conditions recognition. Probabilistic parameters are calculated according to Bayes’s rule. The paper shows a diagnostics example of intermediate floor elements and systems in the old urban development building. Both the suggested method and information theory methods are used during diagnostics.


2022 ◽  
Vol 21 (4) ◽  
pp. 308-311
Author(s):  
K. A. Molokov ◽  
V. V. Novikov

Introduction. Welded joints in large-sized metal structures (e.g., in the structures of ship hulls) subject to low-cycle fatigue are considered. The characteristic appearance of soft interlayers, which are significantly plastically deformed under working loads, was noted. Deformation of the metal structure with damage, especially in the form of cracks, reduces the strength and reliability of structural elements and joints. Pre-deformation negatively affects plasticity; therefore, much depends on the residual plasticity of the cracking material. At the same time, with a decrease in residual plasticity, such an important reliability indicator as the resistance of the material to crack propagation — the fracture toughness – decreases. The paper is devoted to the development of a model that includes analytical dependences for assessing the crack resistance of metal structures and their welded joints with soft interlayers according to the crack resistance limit for all crack sizes.Materials and Methods. The theory and methods of linear mechanics of materials destruction, structural-mechanical approach are used. The calculation results were analyzed and compared to the experimental data and other analytical solutions. The numerical experiment was performed for the ferrite-perlite steel grades of 10, 50, 22K, St3sp, etc., widely used in industry, as well as for alloy steels hardened to medium and high strength of 30KhGSA, 37KhN3A, etc. Results. Analytical dependences are obtained for calculating the relative crack resistance limit according to three main known mechanical characteristics of the state of the material of the soft interlayer of the welded joint.Discussion and Conclusions. The results obtained can be used to assess the crack resistance of pre-deformed structural elements and welded joints (including those with soft interlayers) operating under a transverse load. The results of experimental data and analytical calculations are shown in dimensionless form, which enables to obtain invariant results with respect to the fracture toughness limit.


2014 ◽  
Vol 60 (2) ◽  
pp. 195-208
Author(s):  
T. Domański

Abstract The resistance parameters of timber structures decrease with time. It depends on the type of load and timber classes. Strength reduction effects, referred to as creep-rupture effects, due to long term loading at high stress ratio levels are known for many materials. Timber materials are highly affected by this reduction in strength with duration of load. Characteristic values of load duration and load duration factors are calibrated by means of using probabilistic methods. Three damage accumulation models are considered, that is Gerhard [1] model, Barret, Foschi[2] and Foshi Yao [3] models. The reliability is estimated by means of using representative short- and long-term limit states. Time variant reliability aspects are taken into account using a simple representative limit state with time variant strength and simulation of whole life time load processes. The parameters in these models are fitted by the Maximum Likelihood Methods using the data relevant for Polish structural timber. Based on Polish snow data over 45 years from mountain zone in: Zakopane – Tatra, Świeradów – Karkonosze, Lesko – Bieszczady, the snow load process parameters have been estimated. The reliability is evaluated using representative short – and long –term limit states, load duration factor kmod is obtained using the probabilistic model.


Sign in / Sign up

Export Citation Format

Share Document