Soil Mechanics as it Affects Vehicle Performance

1966 ◽  
Vol 3 (4) ◽  
pp. 204-216
Author(s):  
Nyal E Wilson ◽  
Henry R Krzywicki

A fundamental approach to mobility by studying deformations and stresses in a soil as a wheel moves is described. A driven rigid model wheel was constructed to run over a sample of amorphous granular peat. Metal markers were placed throughout the peat and records of their movements, using an X-ray technique, were obtained as the wheel travelled over the peat. The markers moved in cardioids (heart shapes). The marker movement for any location within the sample was obtained from relationships which existed between the movement of the markers and the positions of the wheel.The trajectories of the principal stresses were determined from the deformations by a graphical method. Using an assumption regarding the angle of internal friction for this peat, the surfaces of maximum shear were obtained. The surfaces of maximum shear resembled the configurations associated with slope stability problems in soil mechanics.

2019 ◽  
Vol 12 (6) ◽  
pp. 163-169
Author(s):  
C. Rajakumar ◽  
P. Kodanda Rama Rao

The slope stability analysis is always under severe threats in many parts of nilgiris district, causing disruption, loss of human life and economy. The stability of slopes depends on the soil shear strength parameters such as Cohesion, Angle of internal friction, Unit weight of soil and Slope geometry. The stability of a slope is measured by its factor of safety using geometric and shear strength parameter based on infinite slopes. In this research, investigation was carried out at 5 locations in Kattery watershed in nilgiris district. The factor of safety of the slope determined by Mohr Coulomb theory based on shear strength parameter calculated from direct shear test which is a conventional procedure for this study. Artificial. Neural Network (ANN) Model is used to predict the factor of safety. The input parameters for the (ANN) are chosen as Cohesion, Angle of internal friction, Density and Slope angle and the factor of safety as output. The results obtained in ANN method were compared with that of conventional method and observed a good agreement between these two methods.


Author(s):  
Prof. R. Y. Kale

The analysis of slope stability has received wide attention nowdays because of its practical importance. To provide steepest slopes which are stable and safe, various investigation are ongoing. The main objective of the project is to analyze slope of embankment by calculating factor of safety. So that an appropriate side slope can be chosen and use for the construction of highway. For this, limit equilibrium analysis has been done using GEO5 software. Swedish circle method (Graphically) has been used to performed manually analysis. In the present study, data collected from the site which is located near Shivni Village, Ner-Yavatmal road. “The construction of Samruddhi Mahamarg” is being constructed at that site. It is having high embankment heights upto 9meter. The values of unit weight of soil(γ), angle of internal friction(ϕ), cross sectional details of embankment and side slope of embankment were taken from that site. In this study, embankment of different heights (3 to 9m) under different 8 slopes (i.e. 1:2, 1:1.75, 1:1.5, 1:1.25, 1:1, 1:0.83, 1:0.7, 1:0.58), different values of cohesion and friction angle were considered. The analysis has been performed on two different cases: Case I stands for single layer of soil and Case II stands for double layer of soil by varying the value of cohesion and angle of internal friction the changes occur in the value of factor of safety were checked by comparing both results obtained by manual method and by GEO5 software. From this investigation it is found that increasing the value of cohesion and angle of internal friction, the factor of safety against slope stability increases. And for a particular height of embankment factor of safety increases with increase in the flatness of slope. From these results, it is better to use C-ϕ soil rather than ϕ soil as it gives maximum FOS as compared to sandy soil. From the analysis of doubled layered soil, it has been concluded that condition 2(with both soil cohesive) found satisfactory better with respect to condition 1(when one soil cohesive and one soil sandy). By considering condition 2 (both soil cohesive), it has been found that the increment of 25 to 30% in the FOS of condition 1 takes place.


2021 ◽  
Vol 331 ◽  
pp. 03004
Author(s):  
Julita Andrini Repadi ◽  
Fathol Bari ◽  
Junaidi ◽  
Oscar Fitrah Nur

The slip surface has an essential role in slope stability analysis. The slip surface is to be known to calculate the safety factor. The velocity of landslides needs to be done to mitigate when a landslide occurs to reduce the risk. This study aims to determine the shape of the slip surface and the velocity of the landslide with variations in load and 2 combination material. The slope is formed in a glass box measuring 110 x10x40 cm. The slope angle used is the same as the angle of internal friction. The slope is given a uniform load until the slope collapses. Loading is done by using a pressure device placed on the prooving ring at the bottom of the press. From both material variatn ions and load variations, it can be seen that the shape of the slip surface that occurs is almost the same, namely in the form of a slip surface. So it is concluded that the load does not affect the shape of the slip surface. The velocity that occurs in combination 1 is moderate-rapid, while combination 2 is moderate. Combination 2 clay is safer than combination 1 but not too significant.


2022 ◽  
Vol 14 (0) ◽  
pp. 1-5
Author(s):  
Tadas Tamošiūnas

This paper describes the stability calculations of the most common road embankments slopes and their results using the modified Bishop method. By searching for the smallest possible effective angle of internal friction of the different slope steepness embankments, the possible different bases of the embankment, the weight of the embankment soil, the load caused by transport and the location of load application (shoulder) were evaluated. Analyzing the obtained calculation results, it was determined that at a slope of 1:2 (26.57°) steepness, to ensure slope stability, the calculated effective internal friction angle of the embankment soil should be φʹd ≥ 28.5°, and at a slope of 1:1.75 (29.74°) steepness – φʹd ≥ 29.8°. When the slope is 2:3 (33.69°) steepness, the stability of the slope cannot be guaranteed.


2014 ◽  
Vol 996 ◽  
pp. 135-140
Author(s):  
Shigeru Suzuki ◽  
Shigeo Sato ◽  
Koji Hotta ◽  
Eui Pyo Kwon ◽  
Shun Fujieda ◽  
...  

White X-ray diffraction with micro-beam synchrotron radiation was used to analyze microscopic stress evolved in coarse grains of a twinning-induced plasticity Fe-Mn-C steel under tensile loading. In addition, electron backscatter diffraction (EBSD) was used to determine the crystal orientation of grains in the polycrystalline Fe-Mn-C steel. Based on these orientation data, the stress and strain distribution in the microstructure of the steel under tensile loading was estimated using FEM simulation where the elastic anisotropy or the crystal orientation dependence of the elasticity was taken into account. The FEM simulation showed that the strain distribution in the microstructure depends on the crystal orientation of each grain. The stress analysis by the white X-ray diffraction indicated that the direction of the maximum principal stresses at measured points in the steel under tensile loading are mostly oriented toward the tensile direction. This is qualitatively consistent with the results of by the FEM simulation, although absolute values of the principal stresses may contain the effect of heterogeneous plastic deformation on the stress distribution.


2021 ◽  
Vol 3 (2) ◽  
pp. 74-80
Author(s):  
Talal Masoud

The results of the direct shear test on Jerash expansive soil show the effect of the initial water content on the cohesion (c) and on the angel of internal friction ( ) [shear strength parameters].it show that, as the initial water increase, the cohesion (c) of Jerash expansive soil also increase up to the shrinkage limit, after that increase of water even small amount, decrease the cohesion of the soil. On the other hand, the results of direct shear test show also  that as the water content increase, the angle of internal friction ( )remain unchanged up to shrinkage limit , any increase of water cause a large decrease on the angle of internal friction of Jerash expansive soil.


2015 ◽  
Vol 29 (2) ◽  
pp. 175-183 ◽  
Author(s):  
Hakan Kibar

Abstract The direct shear test are widely used to measure the bulk material properties for economical design of bulk handling equipment and to estimate wall pressure inside storage structures, namely their bulk density, the angle of internal friction, shear strength, Poisson ratio, and lateral pressure ratios are required. Tests were conducted at thirty six different shear speeds (between 0.30-1.00 mm min-1) and three different normal stresses were applied (60, 120 and 180 kPa). The angle of internal friction, Poisson ratio, and lateral pressure ratios demonstrated fluctuations depending on the shear speeds. The results of the principal component analysis indicated that the first three principal components accounted for 97.40% of the total variability among the thirty six different shear speeds for all the traits investigated. The first principal component was the most important. In the result of principal component analysis, the shear speeds were divided into seven clusters. The pressures were decreased and increased with the change of the angle of internal friction and the lateral pressure ratio. The data obtained from the study will be useful in the structural design of dry bean bins to calculate loads on bins from the stored material and grain handling equipment.


Sign in / Sign up

Export Citation Format

Share Document