scholarly journals Radial Motions and Radial Gas Flows in Local Spiral Galaxies

2021 ◽  
Vol 923 (2) ◽  
pp. 220
Author(s):  
Enrico M. Di Teodoro ◽  
J. E. G. Peek

Abstract We determine radial velocities and mass flow rates in a sample of 54 local spiral galaxies by modeling high-resolution and high-sensitivity data of the atomic hydrogen emission line. We found that, although radial inflow motions seem to be slightly preferred over outflow motions, their magnitude is generally small. Most galaxies show radial flows of only a few km s−1 throughout their H i disks, either inward or outward, without any clear increase in magnitude in the outermost regions, as we would expect for continuous radial accretion. Gas mass flow rates for most galaxies are less than 1 M ⊙ yr−1. Over the entire sample, we estimated an average inflow rate of 0.3 M ⊙ yr−1 outside the optical disk and of 0.1 M ⊙ yr−1 in the outskirts of the H i disks. These inflow rates are about 5–10 times smaller than the average star formation rate of 1.4 M ⊙ yr−1. Our study suggests that there is no clear evidence for systematic radial accretion inflows that alone could feed and sustain the star formation process in the inner regions of local spiral galaxies at its current rate.

2020 ◽  
Vol 638 ◽  
pp. A44 ◽  
Author(s):  
H. Beuther ◽  
Y. Wang ◽  
J. Soler ◽  
H. Linz ◽  
J. Henshaw ◽  
...  

Context. Atomic and molecular cloud formation is a dynamical process. However, kinematic signatures of these processes are still observationally poorly constrained. Aims. We identify and characterize the cloud formation signatures in atomic and molecular gas. Methods. Targeting the cloud-scale environment of the prototypical infrared dark cloud G28.3, we employed spectral line imaging observations of the two atomic lines HI and [CI] as well as molecular lines observations in 13CO in the 1–0 and 3–2 transitions. The analysis comprises investigations of the kinematic properties of the different tracers, estimates of the mass flow rates, velocity structure functions, a histogram of oriented gradients (HOG) study, and comparisons to simulations. Results. The central infrared dark cloud (IRDC) is embedded in a more diffuse envelope of cold neutral medium traced by HI self-absorption and molecular gas. The spectral line data as well as the HOG and structure function analysis indicate a possible kinematic decoupling of the HI from the other gas compounds. Spectral analysis and position–velocity diagrams reveal two velocity components that converge at the position of the IRDC. Estimated mass flow rates appear rather constant from the cloud edge toward the center. The velocity structure function analysis is consistent with gas flows being dominated by the formation of hierarchical structures. Conclusions. The observations and analysis are consistent with a picture where the IRDC G28.3 is formed at the center of two converging gas flows. While the approximately constant mass flow rates are consistent with a self-similar, gravitationally driven collapse of the cloud, external compression (e.g., via spiral arm shocks or supernova explosions) cannot be excluded yet. Future investigations should aim at differentiating the origin of such converging gas flows.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Tobias Blanke ◽  
Markus Hagenkamp ◽  
Bernd Döring ◽  
Joachim Göttsche ◽  
Vitali Reger ◽  
...  

AbstractPrevious studies optimized the dimensions of coaxial heat exchangers using constant mass flow rates as a boundary condition. They show a thermal optimal circular ring width of nearly zero. Hydraulically optimal is an inner to outer pipe radius ratio of 0.65 for turbulent and 0.68 for laminar flow types. In contrast, in this study, flow conditions in the circular ring are kept constant (a set of fixed Reynolds numbers) during optimization. This approach ensures fixed flow conditions and prevents inappropriately high or low mass flow rates. The optimization is carried out for three objectives: Maximum energy gain, minimum hydraulic effort and eventually optimum net-exergy balance. The optimization changes the inner pipe radius and mass flow rate but not the Reynolds number of the circular ring. The thermal calculations base on Hellström’s borehole resistance and the hydraulic optimization on individually calculated linear loss of head coefficients. Increasing the inner pipe radius results in decreased hydraulic losses in the inner pipe but increased losses in the circular ring. The net-exergy difference is a key performance indicator and combines thermal and hydraulic calculations. It is the difference between thermal exergy flux and hydraulic effort. The Reynolds number in the circular ring is instead of the mass flow rate constant during all optimizations. The result from a thermal perspective is an optimal width of the circular ring of nearly zero. The hydraulically optimal inner pipe radius is 54% of the outer pipe radius for laminar flow and 60% for turbulent flow scenarios. Net-exergetic optimization shows a predominant influence of hydraulic losses, especially for small temperature gains. The exact result depends on the earth’s thermal properties and the flow type. Conclusively, coaxial geothermal probes’ design should focus on the hydraulic optimum and take the thermal optimum as a secondary criterion due to the dominating hydraulics.


Author(s):  
Susheel Singh ◽  
Sumanta Acharya ◽  
Forrest Ames

Flow and heat transfer in a low aspect ratio pin-finned channel, representative of an internally cooled turbine airfoil, is investigated using Large Eddy Simulations (LES). To achieve greater control of surface cooling distribution, a novel approach has been recently proposed in which coolant is injected incrementally through a series of holes located immediately behind a specially designed cutout region downstream of the pin-fins. Sheltering the coolant injection behind the pin-fins avoids the impact of the cross-flow buildup that deflects the impingement jet and isolates the surface from cooling. The longitudinal and transverse spacing of the pin-fins, arranged in a staggered fashion, is X/D = 1.046 and S/D = 1.625, respectively. The aspect ratio (H/D) of pin-fin channel is 0.5. Due to the presence of the sequential jets in the configuration, the local cooling rates can be controlled by controlling the jet-hole diameter which impacts the jet mass flow rate. Hence, four different hole diameters, denoted as Large (L), Medium (M) , Small (S), Petite (P) are tested for impingement holes, and their effects are studied. Several patterns of the hole-size distributions are studied. It is shown that the peak Nusselt number in the stagnation region below the jet correlates directly with the jet-velocity, while downstream the Nusselt numbers correlate with the total mass flow rates or the average channel velocity. The local cooling parameter defined as (Nu/Nu0)(1-ε) correlates with the jet/channel mass flow rates.


2018 ◽  
Vol 611 ◽  
pp. A72 ◽  
Author(s):  
Marita Krause ◽  
Judith Irwin ◽  
Theresa Wiegert ◽  
Arpad Miskolczi ◽  
Ancor Damas-Segovia ◽  
...  

Aim. The vertical halo scale height is a crucial parameter to understand the transport of cosmic-ray electrons (CRE) and their energy loss mechanisms in spiral galaxies. Until now, the radio scale height could only be determined for a few edge-on galaxies because of missing sensitivity at high resolution.Methods. We developed a sophisticated method for the scale height determination of edge-on galaxies. With this we determined the scale heights and radial scale lengths for a sample of 13 galaxies from the CHANG-ES radio continuum survey in two frequency bands.Results. The sample average values for the radio scale heights of the halo are 1.1 ± 0.3 kpc in C-band and 1.4 ± 0.7 kpc in L-band. From the frequency dependence analysis of the halo scale heights we found that the wind velocities (estimated using the adiabatic loss time) are above the escape velocity. We found that the halo scale heights increase linearly with the radio diameters. In order to exclude the diameter dependence, we defined a normalized scale height h˜ which is quite similar for all sample galaxies at both frequency bands and does not depend on the star formation rate or the magnetic field strength. However, h˜ shows a tight anticorrelation with the mass surface density.Conclusions. The sample galaxies with smaller scale lengths are more spherical in the radio emission, while those with larger scale lengths are flatter. The radio scale height depends mainly on the radio diameter of the galaxy. The sample galaxies are consistent with an escape-dominated radio halo with convective cosmic ray propagation, indicating that galactic winds are a widespread phenomenon in spiral galaxies. While a higher star formation rate or star formation surface density does not lead to a higher wind velocity, we found for the first time observational evidence of a gravitational deceleration of CRE outflow, e.g. a lowering of the wind velocity from the galactic disk.


Author(s):  
Thomas Ho¨hne ◽  
So¨ren Kliem ◽  
Roman Vaibar

The influence of density differences on the mixing of the primary loop inventory and the Emergency Core Cooling (ECC) water in the cold leg and downcomer of a Pressurised Water Reactor (PWR) was analyzed at the ROssendorf COolant Mixing (ROCOM) test facility. This paper presents a matrix of ROCOM experiments in which water with the same or higher density was injected into a cold leg of the reactor model with already established natural circulation conditions at different low mass flow rates. Wire-mesh sensors measuring the concentration of a tracer in the injected water were installed in the cold leg, upper and lower part of the downcomer. A transition matrix from momentum to buoyancy-driven flow experiments was selected for validation of the CFD software ANSYS CFX. A hybrid mesh with 4 million elements was used for the calculations. The turbulence models usually applied in such cases assume that turbulence is isotropic, whilst buoyancy actually induces anisotropy. Thus, in this paper, higher order turbulence models have been developed and implemented which take into account for that anisotropy. Buoyancy generated source and dissipation terms were proposed and introduced into the balance equations for the turbulent kinetic energy. The results of the experiments and of the numerical calculations show that mixing strongly depends on buoyancy effects: At higher mass flow rates (close to nominal conditions) the injected slug propagates in the circumferential direction around the core barrel. Buoyancy effects reduce this circumferential propagation with lower mass flow rates and/or higher density differences. The ECC water falls in an almost vertical path and reaches the lower downcomer sensor directly below the inlet nozzle. Therefore, density effects play an important role during natural convection with ECC injection in PWR and should be also considered in Pressurized Thermal Shock (PTS) scenarios. ANSYS CFX was able to predict the observed flow patterns and mixing phenomena quite well.


Sign in / Sign up

Export Citation Format

Share Document