scholarly journals A Comparative Clinical Study of the Effect of Denture Cleansing on the Surface Roughness and Hardness of Two Denture Base Materials

2016 ◽  
Vol 4 (3) ◽  
pp. 476-481 ◽  
Author(s):  
Amani Ramadan Moussa ◽  
Wessam Mohamed Dehis ◽  
Asmaa Nabil Elboraey ◽  
Hisham Samir ElGabry

AIM: This study aimed to verify the influence of oral environment and denture cleansers on the surface roughness and hardness of two different denture base materials. METHODS: A total of sixteen identical removable disc specimens (RDS) were processed. Eight RDS were made from heat-cured acrylic resin (AR) and the other eight were fabricated from thermoplastic injection moulded resin (TR). Surface roughness and hardness of DRS were measured using ultrasonic profilometry and Universal testing machine respectively. Then the four RDS (two AR and two of TR) were fixed to each maxillary denture, after three months RDS were retrieved. Surface roughness and hardness of RDS have measured again.RESULTS: The surface roughness measurements revealed no significant difference (p >0.05) for both disc groups at baseline. However, both groups showed a significant increase in the surface roughness after three months with higher mean value for (TR) group. On the other hand, the (AR) group showed higher hardness mean value than (TR) group at baseline with no significant decrease in the hardness values (p >0.05) following three months follow-up period. CONCLUSIONS: Denture cleansers have an effect on the denture’s surface roughness and hardness concurrently with an oral condition which will consequently influence the complete dentures’ lifetime and patients’ satisfaction.

2016 ◽  
Vol 17 (4) ◽  
pp. 322-326 ◽  
Author(s):  
M Kalavathi ◽  
Mallikarjuna Ragher ◽  
G Vinayakumar ◽  
Sanketsopan Patil ◽  
Aishwarya Chatterjee ◽  
...  

ABSTRACT Objective The objective of this study was to evaluate and compare changes in the flexural strength of heat-cured denture base resins when treated using denture cleansers. Study design A total of 40 specimens with dimension 65 mm length, 10 mm width, and 3 mm thickness were prepared as per ISO 1567 specification. A total of 10 specimens were immersed in distilled water to be used as control. Of the remaining 30 samples, 10 were treated with Clinsodent, 10 with VI-Clean, and 10 with Clanden denture cleansers. Specimens in each group were subjected to three-point flexural load in universal testing machine at a cross-head speed of 5 mm/min. The peak load (N) was recorded and flexural strength was calculated. The findings were analyzed using Kruskal–Wallis analysis of variance and Mann–Whitney test. Results Heat-cured denture base resin selected for this study showed significant difference in flexural strength after immersion in denture cleansers Clinsodent, VI-Clean, and Clanden solutions, when compared with the control group. Conclusion Findings of this study showed that denture cleansers altered the flexural strength of heat polymerized acrylic resins that endured soaking cycles which simulated 180 days of use. Hence, denture cleansers should be used with caution, once a day after brushing the dentures. It is advisable for patients to follow the manufacturer's instructions. How to cite this article Ragher M, Vinayakumar G, Patil S, Chatterjee A, Mallikarjuna DM, Dandekeri S, Swetha V, Pradeep MR. Variations in Flexural Strength of Heat-polymerized Acrylic Resin after the Usage of Denture Cleansers. J Contemp Dent Pract 2016;17(4):322-326.


2021 ◽  
Vol 17 (1) ◽  
pp. 22-26
Author(s):  
Kadek Ayu Wirayuni ◽  
◽  
I Made Hendri Dwi Saputra ◽  

Introduction: The denture base is the part of the removable denture that is supported by good adaptation to the underlying oral tissue. Most of the denture bases are made of acrylic or polymethyl methacrylate resin, better known as PMMA. However, the acrylic resin also has disadvantages such as easily broken and absorbs liquids both water and chemicals. The chemical absorption like alcohol, ethanol, and some drinks that contain acidic materials will chemically be induced with acrylic resin and settle in the pores of the acrylic resin. The chemical damage or defect creates roughness on the surface of the acrylic resin which can cause cracking or crazing and a decrease in surface strength and hardness. Materials and Methods: The method used in this research was a laboratory experimental design with a post-test-only control group using 12 samples consisting of 2 different types of samples by measuring the surface roughness of the acrylic resin after immersing the sample with a predetermined time. Results and Discussions: One-way ANOVA test results showed a significant difference in surface roughness after the samples immersion with a value of p = 0.006 (p <0.05). Conclusions: Based on this research, can be concluded that there is an increase in the surface roughness of the heated polymerized acrylic resin for 3 hours and 4 hours of immersion. The longer the heated polymerized acrylic resin is soaked in arak hence the level of surface roughness increases.


2019 ◽  
Vol S (1) ◽  
pp. 7-10
Author(s):  
Ahmed Asim Saeed Al-Ali ◽  
◽  
Ammar k. Al-Noori ◽  
Amer A. Taqa ◽  
◽  
...  

Objectives: Compare tensile and transverse strength of new copolymers for denture base. Materials and methods: The specimens were prepared from heat cured acrylic resin with three types of additives: Acryester B, Ethoxycarbonylethylene, and Propenoic acid at a percentage of 5% and 10%. The tensile and transverse strains were tested, recorded and compared. Results: The analysis of variance display statistically significant difference. The p-value was 0.001 for each of tensile and transverse strain tests. Conclusions: The tensile strength of the novel copolymers increased. The transverse strength of some of the novel copolymers increased.


2008 ◽  
Vol 9 (4) ◽  
pp. 67-74 ◽  
Author(s):  
Behnaz Ebadian ◽  
Mohammad Razavi ◽  
Solmaz Soleimanpour ◽  
Ramin Mosharraf

Abstract Aim Controversy continues regarding the biocompatibility of denture base materials. One method to evaluate the biocompatibility of materials is in an animal study. Using dogs as subjects, the purpose of this study was to evaluate the vestibular tissue reaction to cobalt chromium (Co-Cr), heat cure acrylic resin, and acrylic resin mixed with aluminum oxide (Al2O3) compared with a control group using the histopathologic method. Methods and Materials Twelve disk shape samples (2 mm × 8 mm) in four groups of Co-Cr, acrylic resin, acrylic resin mixed with a 20% weight ratio of Al2O3, and a control group (Teflon) were fabricated. In one stage surgery two samples of each material (8 samples) was implanted in the buccal vestibule of each dog (n=6), subcutaneously. At 45 and 90-day intervals, half of the samples were excised along with peripheral tissue to assess the presence of inflammation by grading on a scale from 0 to 3 and the presence of a fibrotic capsule using histological observations. Data were analyzed using the Kruskal-Wallis, Mann-Whitney, and Tau b Kendal tests. Results Tissue reaction between Co-Cr and the control group was significant (P=0.02), but it was not significant between other groups. There was no significant difference between the 45 and 90-day postinsertion samples. The formation of fibrotic capsule groups was significant (P=0.01). It was significant between the Co-Cr and acrylic resin groups (P=0.01) and the acrylic resin and control groups (P=0.01). Conclusion The Co-Cr group was more toxic than the other groups. The inflammation increased during time. The inflammation in two acrylic groups was greater than the control and less than the Co-Cr group. The formation of fibrotic capsule, except in the acrylic resin with Al2O3 group, increased over time. Clinical Significance Co-Cr alloys are toxic and can produce damage to living tissue. Heat cure acrylic resin materials have less toxicity, and their use is safer than Co-Cr alloys. Citation Ebadian B, Razavi M, Soleimanpour S, Mosharraf R. Evaluation of Tissue Reaction to Some Denture-base Materials: An Animal Study. J Contemp Dent Pract 2008 May; (9)4:067-074.


2013 ◽  
Vol 24 (2) ◽  
pp. 152-156 ◽  
Author(s):  
Helena de Freitas Oliveira Paranhos ◽  
Amanda Peracini ◽  
Marina Xavier Pisani ◽  
Viviane de Cássia Oliveira ◽  
Raphael Freitas de Souza ◽  
...  

This study evaluated color stability, surface roughness and flexural strength of acrylic resin specimens after immersion in alkaline peroxide and alkaline hypochlorite, simulating a period of one and a half year of use of overnight immersion. Sixty disc-shaped (16X4 mm) and 80 rectangular specimens (65X10X3.3 mm) were prepared from heat-polymerized acrylic resin (Lucitone 550) and distributed into 4 groups (n=20): C1: without immersion, C2: 8 h immersion in distilled water; AP: 8 h immersion in alkaline peroxide effervescent tablet; SH: 8 h immersion in 0.5% NaOCl solution. Properties were evaluated at baseline and after the immersion. Color data were also calculated according the National Bureau of Standards (NBS). Results were analyzed statistically by ANOVA and Tukey's HSD test (α=0.05). AP (2.34 ± 0.41) caused color alteration significantly higher than C2 (0.39 ± 0.30) and SH (1.73 ± 0.52). The mean ΔE values were classified as indicial for C2 (0.36 ± 0.29) and noticeable for AP (2.12 ± 0.39) and SH (1.59 ± 0.48). SH (0.0195 ± 0.0150) caused significantly higher ΔRa (p=0.000) than the C2 (0.0005 ± 0.0115) and PA (0.0005 ± 0.0157) groups. There was no statistically significant difference (p=0.063) among the solutions for flexural strength (C1: 105.43 ± 14.93, C2: 100.30 ± 12.43, PA: 97.61 ± 11.09, SH: 95.23 ± 10.18). In conclusion, overnight immersion in denture cleansing solutions simulating a year and a half of use did not alter the flexural strength of acrylic resin but caused noticeable color alterations, higher for alkaline peroxide. The 0.5% NaOCl solution caused increase in surface roughness.


2015 ◽  
Vol 26 (4) ◽  
pp. 404-408 ◽  
Author(s):  
Carolina Noronha Ferraz Arruda ◽  
Danilo Balero Sorgini ◽  
Viviane de Cássia Oliveira ◽  
Ana Paula Macedo ◽  
Cláudia Helena Silva Lovato ◽  
...  

<p>This study evaluated color stability, surface roughness and flexural strength of acrylic resin after immersion in alkaline peroxide and alkaline hypochlorite solutions, simulating a five-year-period of use. Sixty disc-shaped (16x4 mm) and 60 rectangular specimens (65x10x3.3 mm) were prepared from heat-polymerized acrylic resin (Lucitone 550) and assigned to 3 groups (n=20) of immersion (20 min): C1: distilled water; AP: warm water and one alkaline peroxide tablet; SH: 0.5% NaOCl solution. Color data (∆E) were determined by a colorimeter and also quantified according to the National Bureau of Standards units. A rugosimeter was used to measure roughness (μm) and the flexural strength (MPa) was measured using a universal testing machine. Data were evaluated by Kruskal-Wallis followed by Dunn tests (color stability and surface roughness) and by one-way ANOVA and Bonferroni test (flexural strength). For all tests was considered α=0.05. AP {0.79 (0.66;1.42)} caused color alteration significantly higher than C1 {0.45 (0.37;0.57)} and SH {0.34 (0.25;0.42)}. The mean ∆Ε values quantified by NBS were classified as "trace" for C1 (0.43) and SH (0.31) and "slight" for AP (0.96). SH {-0.015 (-0.023;0.003)} caused significantly higher ΔRa than the C1 {0.000 (-0.004;0.010)} and AP {0.000 (-0.009;0.008)} groups. There was no statistically significant difference among the solutions for flexural strength (C1: 84.62±16.00, AP: 85.63±12.99, SH: 84.22±14.72). It was concluded that immersion in alkaline peroxide and NaOCl solutions simulating a five-year of 20 min daily soaking did not cause clinically significant adverse effects on the heat-polymerized acrylic resin.</p>


2018 ◽  
Vol 41 (10) ◽  
pp. 677-683 ◽  
Author(s):  
Merve Çakırbay Tanış ◽  
Canan Akay ◽  
Handan Sevim

Introduction: The aim of this study was to evaluate the cytotoxic effect of various denture base materials following four different aging periods. Methods: In total, 48 disc-shaped specimens per each group were prepared: Group I: acrylic resin polymerized in cool water and heated up to 100°C over 45 min and boiled for 15 min; Group II: acrylic resin polymerized under pressure in 40°C–45°C water bath for 10 min; Group III: autopolymerized hard relining resin Cold Liner Rebase; Group IV: autopolymerized hard relining resin Truliner; Group V: soft relining resin DentuSil. Then the specimens were stored in water for 24 h or 15 days, or thermocycled 2500 times or 10,000 times. Cytotoxicity was evaluated with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using L929 cells after 72-h cell incubation. Cell viability percentages were counted and statistical analyses were performed. The results were also evaluated according to ISO standard 10993-5. Results: All materials showed similar cell viability percentages following 24-h water storage and 2500 and 10,000 thermal cycles. Following 15-day water storage, a statistically significant difference was observed between the materials. Comparisons of the aging periods for each material showed statistically significant differences. Groups III and IV showed moderately cytotoxic effect following 15-day water storage. The remaining groups showed slightly cytotoxic or non-cytotoxic effect. Discussion: Polymerizing acrylic resins under pressure can be an alternative to conventional polymerizing to ensure a faster denture repair while providing similar cell viability values. Heat-cured acrylic resins provide higher cell viability than hard chairside lining materials in a 15-day period.


2018 ◽  
Vol 2 (2) ◽  
pp. 162-173
Author(s):  
Mahabad Saleh ◽  
Salem Salem

Background and Objectives: Denture cleanser is the most widely used method by the patients to maintain clean and healthy dentures but the prolonged use of such cleansers may affect the properties of the denture. The present study was carried out to evaluate the effect of three prepared denture cleansers which were the 4% citric acid, 4% tartaric acid, and 4% oxalic acid in addition to the Protefix a commercially available denture cleansers, on some mechanical and physical properties (color stability, water sorption, and solubility) of acrylic resin (Stellon QC-20) and flexible nylon (Vaplast) denture base materials after immersion in tea solution. Methods: One hundred specimens (100) were prepared in two equal major groups: acrylic resin and Valplast. For each test of the physical and mechanical properties, 50 specimens were prepared, 25 from acrylic resin and 25 from Valplast. Later on, divided into five groups, one group used as a control and immersed in distilled water, and remaining 4 groups used as test groups; by immersing in one of the denture cleansers after staining in tea solutions for 10 days. The effect of denture cleansers on the properties was studied and compared with the control group. Results: Visual examination method showed no color changes for acrylic and slight color change for valplast specimens. Valplast specimens showed higher water sorption and solubility than acrylic. Conclusions: The findings showed that the 4 denture cleansers were equally effective, and did not cause significant alteration in the tested properties. Except acrylic specimens immersed in oxalic acid showed less color stability.


Author(s):  
Eddy Dahar ◽  
Raudhatul Husna

Heat polymerized acrylic resin is the most common material used for making denture base because of it’s advantages. However, this material still hasn’t fulfill all the ideal requirements as a denture base. Some disadvantages that need to be fixed are low impact and transverse strength causing an easy base of fracture. Several attempts were made to improve the mechanical properties of heat polymerized acrylic resin materials by adding reinforcing materials. Zirconium oxide is one of chemical group that can be used as a reinforcing material and polypropylene fiber which is including in fiber reinforcing groups. This study aims to determine whether there is a difference in the effect of the addition of 5% ZrO2 nanoparticles and 2% chopped polypropylene fibers 6 mm in length on the impact and transverse strength of heat polymerized acrylic resin denture base material. The design of this study is a laboratory experimental and the number of samples in this study are 60 samples. The result of this study shows the mean value of the impact and transverse strength of heat polymerized acrylic resin with ZrO2 nanoparticles reinforced is greater than the control group and heat polymerized acrylic resin group with polypropylene fiber reinforced with significant difference, and the mean value of impact and transverse strength of heat polymerized acrylic resin with polypropylene fibers reinforced is greater than the control group with significant difference.


Sign in / Sign up

Export Citation Format

Share Document