scholarly journals Enhancement of Chondrogenesis in Hypoxic Precondition Culture: A Systematic Review

2021 ◽  
Vol 9 (F) ◽  
pp. 492-504
Author(s):  
Sholahuddin Rhatomy ◽  
Riky Setyawan ◽  
Michael Aaron Romulo

BACKGROUND: Cartilage tear has begun to be treated with stem cells. However, stem cell oxygen level culture has not been evaluated for the best environment to enhance chondrogenesis. AIM: The purpose of this review is to focus on the hypoxic oxygen level of stem cells culture as a treatment for cartilage tear. METHODS: A literature search was systemically conducted on PubMed (MEDLINE), OVID, EMBASE, the Cochrane Library, Scopus, Web of Science, Science Direct, Wiley Online Library, Google Scholar, and bibliography of selected articles with the terms (“culture”) AND (“stem cell” OR “mesenchymal stem cell” OR “MSC”) AND (“hypoxic” OR “hypoxia”) AND (“cartilage” OR “chondro*”) as the main keywords. A total of 438 articles were reviewed. Thirty-six articles were considered relevant for this systematic review. RESULTS: The result of this review supports stimulation effects of hypoxic oxygen level stem cell culture in chondrogenesis process. Most studies used 5% oxygen concentration for culture, both of in vivo and in vitro studies. Due to the heterogeneity nature of the included studies, meta-analysis was unable to be conducted. CONCLUSION: Hypoxia state seems to play an important role in chondrocytes proliferation, differentiation, and matrix production.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuan Li ◽  
Qi-lin Jiang ◽  
Leanne Van der Merwe ◽  
Dong-hao Lou ◽  
Cai Lin

Abstract Background A skin flap is one of the most critical surgical techniques for the restoration of cutaneous defects. However, the distal necrosis of the skin flap severely restricts the clinical application of flap surgery. As there is no consensus on the treatment methods to prevent distal necrosis of skin flaps, more effective and feasible interventions to prevent skin flaps from necrosis are urgently needed. Stem therapy as a potential method to improve the survival rate of skin flaps is receiving increasing attention. Methods This review followed the recommendations from the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statements. Twenty studies with 500 animals were included by searching Web of Science, EMBASE, PubMed, and Cochrane Library databases, up until October 8, 2020. Moreover, the references of the included articles were searched manually to obtain other studies. All analyses were conducted using Review Manager V.5.3 software. Results Meta-analysis of all 20 studies demonstrated stem cell treatment has significant effects on reducing necrosis of skin flap compared with the control group (SMD: 3.20, 95% CI 2.47 to 3.93). Besides, subgroup analysis showed differences in the efficacy of stem cells in improving the survival rate of skin flaps in areas of skin flap, cell type, transplant types, and method of administration of stem cells. The meta-analysis also showed that stem cell treatment had a significant effect on increasing blood vessel density (SMD: 2.96, 95% CI 2.21 to 3.72) and increasing the expression of vascular endothelial growth factor (VEGF, SMD: 4.34, 95% CI 2.48 to 6.1). Conclusions The preclinical evidence of our systematic review indicate that stem cell-based therapy is effective for promoting early angiogenesis by up regulating VEGF and ultimately improving the survival rate of skin flap. In summary, small area skin flap, the administration method of intra-arterial injection, ASCs and MSCs, and xenogenic stem cells from humans showed more effective for the survival of animal skin flaps. In general, stem cell-based therapy may be a promising method to prevent skin flap necrosis.


2021 ◽  
Author(s):  
Xiao-long Xu ◽  
Sheng-jun Lu ◽  
Hong Pei ◽  
Shun-guang Chen ◽  
Quan-ming Liao

Abstract Background: Multiple studies have focused on stem cell-based therapies for growth plate injury.However, the results are not consistent.Objectives: This systematic review and meta-analysis were performed to evaluate the effects of stem cells on growth plate healing.Methods: A detailed search of relevant studies was conducted in three databases including Pub med, Cochrane library, and Embase databases, using the following keywords: “growth plate” or “physis” AND “stem cell” from inception to November 10, 2021. The standard mean difference (SMD) and 95% confidence interval (CI) for each individual study were extracted from the original studies based on relevant data and pooled to obtain integrated estimates using random effects modeling.Results: A total of 6 studies were identified. The results demonstrated that the angular deformity in the stem cell group was significantly lower than that in the control group at 4, 8,12 and 16weeks. The length discrepancy represented the degree of shortening deformity. In the stem cell group, the shortening deformity was milder than that of the control group at 16weeks. Meanwhile, at 16 weeks after surgery, the higher histologic scores in the stem cell group indicated that stem cell can significantly improve the repair quality of growth plate.Conclusions: This systematic review and meta-analysis confirmed that stem cell improved the rehabilitation of growth plate injury. However, larger-scale studies are needed to further support these findings.


2019 ◽  
Vol 39 (3) ◽  
Author(s):  
Nadiar Dwi Nuarisa ◽  
I Gde Rurus Suryawan ◽  
Andrianto Andrianto

Introduction : Stem cell therapy for myocardial regeneration is expected to increase cardiomyocyte proliferation and trigger neovascularization to improve cardiomyocytes. Mesenchymal Stem Cells (MSCs) are ideal candidates for regenerative medicine and immunotherapy. But low viability of MSCs is a major challenge in this alternative therapy. Therefore, a cytoprotective strategy is needed, one of them is hypoxic preconditioning which can significantly increase survival stem cells after being transplanted. MSCs are known to have a limited life span, after experiencing several splits MSC will enter the senescence process. It is known that hypoxia can also increase cell proliferation and differentiation potential in vitro and in vivo through the role of Octamer-4 (Oct-4) as a regulator of the pluripotency gene. Methods : Experimental laboratory studies (in vitro studies) using human-AMSCs which were given hypoxic preconditioning, observed as a immunocytochemistry. Results : The results showed that hypoxic precondition (1% O2) inhibited the senescence process. It can be seen in the lower expression of senescence in hypoxic conditions at P6, P7, P8, P9, P10 compared to normoxic ((p=0,004, p=0,001, p=0,009, p=0,013, p=0,024. There is a significant difference in the senescence expression of each passage in hypoxic and normoxic conditions with the highest expression at P10. In addition, we also observed AMSCs differentiation through the Oct-4 expression. It is showed that Oct-4 expression were higher in hypoxia compared to normoxia on P7, P8, P9, P10 (p=0,009, p=0,009, p=0,030, p=0,0001). Conclusions : Hypoxic preconditioning have the effect of inhibiting the senescence process on Adipose-derived MSCs (AMSCs) or prolonging their life span. The longer life span of AMSCs is also seen by higher cell differentiation potential from increased expression of Oct-4. However, the mechanism of inhibiting the senescence process in hypoxia in stem cells is still remain unknown. Keywords: human-Adipose derived Mesenchymal Stem Cell Cultures (h-AMSCs), Hypoxic Preconditioning, Senescence cell, Oct-4.


2019 ◽  
Vol 14 (8) ◽  
pp. 683-697 ◽  
Author(s):  
Fanxiao Liu ◽  
Qingqi Meng ◽  
Heyong Yin ◽  
Zexing Yan

Background:Multiple studies have focused on stem cell-based treatments for rotator cuff disorders; however, the outcomes are not consistent.Objective:This systematic review and meta-analysis were performed to evaluate the effects of stem cells on rotator cuff healing.Methods:A detailed search of relevant studies was conducted in three databases including Pubmed/ Medline, Cochrane library, and Embase databases, using the following keywords: “rotator cuff” or “Tissue Engineering” AND “stem cell” from inception to January 01, 2019. The standard mean difference (SMD) and 95% confidence interval (CI) for each individual study were extracted from the original studies or calculated based on relevant data and pooled to obtain integrated estimates using random effects modeling.Results:A total of 22 studies were identified. The results demonstrated that the ultimate strain in the stem cell group was significantly higher than that in the control group at 4 and 8 weeks. Muscle weight in the stem cell group was higher than the control group at 8 weeks, while no significant differences were detected at 16 weeks. The stem cell group had lower visual analog scale scores (VAS) at 1, 3, and 6 months, and higher American shoulder and elbow surgeons score (ASES) at 3 months. In addition, the walking distance, time, and speed in the stem cell group were significantly superior to those in the control group.Conclusion:This meta-analysis confirms that stem cells improved the rehabilitation of rotator cuff disorders. However, larger-scale studies are needed to further support these findings.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Manuel Pedro Jimenez-García ◽  
Antonio Lucena-Cacace ◽  
Daniel Otero-Albiol ◽  
Amancio Carnero

AbstractThe EMX (Empty Spiracles Homeobox) genes EMX1 and EMX2 are two homeodomain gene members of the EMX family of transcription factors involved in the regulation of various biological processes, such as cell proliferation, migration, and differentiation, during brain development and neural crest migration. They play a role in the specification of positional identity, the proliferation of neural stem cells, and the differentiation of certain neuronal cell phenotypes. In general, they act as transcription factors in early embryogenesis and neuroembryogenesis from metazoans to higher vertebrates. The EMX1 and EMX2’s potential as tumor suppressor genes has been suggested in some cancers. Our work showed that EMX1/EMX2 act as tumor suppressors in sarcomas by repressing the activity of stem cell regulatory genes (OCT4, SOX2, KLF4, MYC, NANOG, NES, and PROM1). EMX protein downregulation, therefore, induced the malignance and stemness of cells both in vitro and in vivo. In murine knockout (KO) models lacking Emx genes, 3MC-induced sarcomas were more aggressive and infiltrative, had a greater capacity for tumor self-renewal, and had higher stem cell gene expression and nestin expression than those in wild-type models. These results showing that EMX genes acted as stemness regulators were reproduced in different subtypes of sarcoma. Therefore, it is possible that the EMX genes could have a generalized behavior regulating proliferation of neural crest-derived progenitors. Together, these results indicate that the EMX1 and EMX2 genes negatively regulate these tumor-altering populations or cancer stem cells, acting as tumor suppressors in sarcoma.


2021 ◽  
Vol 22 (4) ◽  
pp. 1824
Author(s):  
Matthias Mietsch ◽  
Rabea Hinkel

With cardiovascular diseases affecting millions of patients, new treatment strategies are urgently needed. The use of stem cell based approaches has been investigated during the last decades and promising effects have been achieved. However, the beneficial effect of stem cells has been found to being partly due to paracrine functions by alterations of their microenvironment and so an interesting field of research, the “stem- less” approaches has emerged over the last years using or altering the microenvironment, for example, via deletion of senescent cells, application of micro RNAs or by modifying the cellular energy metabolism via targeting mitochondria. Using autologous muscle-derived mitochondria for transplantations into the affected tissues has resulted in promising reports of improvements of cardiac functions in vitro and in vivo. However, since the targeted treatment group represents mainly elderly or otherwise sick patients, it is unclear whether and to what extent autologous mitochondria would exert their beneficial effects in these cases. Stem cells might represent better sources for mitochondria and could enhance the effect of mitochondrial transplantations. Therefore in this review we aim to provide an overview on aging effects of stem cells and mitochondria which might be important for mitochondrial transplantation and to give an overview on the current state in this field together with considerations worthwhile for further investigations.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 506
Author(s):  
Bernardo Romão ◽  
Ana Luísa Falcomer ◽  
Gabriela Palos ◽  
Sandra Cavalcante ◽  
Raquel Braz Assunção Botelho ◽  
...  

This study aimed to perform a systematic review and meta-analysis of the glycemic index (GI) of gluten-free bread (GFB) and its main ingredients. The systematic review followed PRISMA guidelines, using seven electronic databases (PubMed, EMBASE, Scopus, Science Direct, Web of Science, gray literature research with Google Scholar, and patents with Google Patent tool), from inception to November 2020. Eighteen studies met the inclusion criteria evaluating 132 GFB samples. Five articles tested GI in vivo, eleven in vitro; and two studies tested both methods. The analysis showed that 60.7% (95% CI: 40.2–78.1%) of the samples presented high glycemic indexes, evidencing a high glycemic profile for GFB. Only 18.2% (95% CI: 11.7–27.2%) of the bread samples presented in the studies were classified as a low GI. Meta-analysis presented moderate/low heterogenicity between studies (I2 = 61% and <1% for both high and low GIs) and reinforced the proportion of high GIs. Lower GIs were found in formulations based on Colocasia esculenta flour or enriched with fiber, yogurt and curd cheese, sourdough, psyllium, hydrocolloids, enzymes, fructans, and resistant starch, highlighting the efficacy of these ingredients to lower GFBs’ GI. GFB tends to present high GI, impacting the development of chronic diseases when consumed.


2018 ◽  
Vol 29 (3) ◽  
pp. 321-332 ◽  
Author(s):  
Suleiman Alhaji Muhammad ◽  
Norshariza Nordin ◽  
Sharida Fakurazi

AbstractInjury to tissues is a major clinical challenge due to the limited regenerative capacity of endogenous cells. Stem cell therapy is evolving rapidly as an alternative for tissue regeneration. However, increasing evidence suggests that the regenerative ability of stem cells is mainly mediated by paracrine actions of secretome that are generally secreted by the cells. We aimed to systematically evaluate the efficacy of dental stem cell (DSC)-conditioned medium inin vivoanimal models of various tissue defects. A total of 15 eligible studies was included by searching Pubmed, Scopus and Medline databases up to August 2017. The risk of bias was assessed using the Systematic Review Centre for Laboratory Animal Experimentation risk of bias tool. Of 15 studies, seven reported the therapeutic benefit of the conditioned medium on neurological diseases and three reported on joint/bone-related defects. Two interventions were on liver diseases, whereas the remaining three addressed myocardial infarction and reperfusion, lung injury and diabetes. Nine studies were performed using mouse models and the remaining six studies used rat models. The methodological quality of the studies was low, as most of the key elements required in reports of preclinical studies were not reported. The findings of this review suggested that conditioned medium from DSCs improved tissue regeneration and functional recovery. This current review strengthens the therapeutic benefit of cell-free product for tissue repair in animal models. A well-planned study utilizing validated outcome measures and long-term safety studies are required for possible translation to clinical trials.


Author(s):  
Li Wang ◽  
Yiwen Zhang ◽  
Jiajun Zhong ◽  
Yuan Zhang ◽  
Shuisheng Zhou ◽  
...  

Objective: The efficacy of mesenchymal stem cell (MSC) therapy in acetaminophen-induced liver injury has been investigated in animal experiments, but individual studies with a small sample size cannot be used to draw a clear conclusion. Therefore, we conducted a systematic review and meta-analysis of preclinical studies to explore the potential of using MSCs in acetaminophen-induced liver injury. Methods: Eight databases were searched for studies reporting the effects of MSCs on acetaminophen hepatoxicity. The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines were used. SYRCLE’s risk of bias tool for animal studies was applied to assess the methodological quality. A meta-analysis was performed by using RevMan 5.4 and STATA/SE 16.0 software. Results: Eleven studies involving 159 animals were included according to PRISMA statement guidelines. Significant associations were found for MSCs with the levels of alanine transaminase (ALT) (standardized mean difference (SMD) − 2.58, p < 0.0001), aspartate aminotransferase (AST) (SMD − 1.75, p = 0.001), glutathione (GSH) (SMD 3.7, p < 0.0001), superoxide dismutase (SOD) (SMD 1.86, p = 0.022), interleukin 10 (IL-10) (SMD 5.14, p = 0.0002) and tumor necrosis factor-α (TNF-α) (SMD − 4.48, p = 0.011) compared with those in the control group. The subgroup analysis showed that the tissue source of MSCs significantly affected the therapeutic efficacy (p < 0.05). Conclusion: Our meta-analysis results demonstrate that MSCs could be a potential treatment for acetaminophen-related liver injury.


Sign in / Sign up

Export Citation Format

Share Document