scholarly journals The Hypoxic Preconditioning Effect On Senescence Cell Process In Cultured Adipose-Derived Mesenchymal Stem Cells (AMSCs)

2019 ◽  
Vol 39 (3) ◽  
Author(s):  
Nadiar Dwi Nuarisa ◽  
I Gde Rurus Suryawan ◽  
Andrianto Andrianto

Introduction : Stem cell therapy for myocardial regeneration is expected to increase cardiomyocyte proliferation and trigger neovascularization to improve cardiomyocytes. Mesenchymal Stem Cells (MSCs) are ideal candidates for regenerative medicine and immunotherapy. But low viability of MSCs is a major challenge in this alternative therapy. Therefore, a cytoprotective strategy is needed, one of them is hypoxic preconditioning which can significantly increase survival stem cells after being transplanted. MSCs are known to have a limited life span, after experiencing several splits MSC will enter the senescence process. It is known that hypoxia can also increase cell proliferation and differentiation potential in vitro and in vivo through the role of Octamer-4 (Oct-4) as a regulator of the pluripotency gene. Methods : Experimental laboratory studies (in vitro studies) using human-AMSCs which were given hypoxic preconditioning, observed as a immunocytochemistry. Results : The results showed that hypoxic precondition (1% O2) inhibited the senescence process. It can be seen in the lower expression of senescence in hypoxic conditions at P6, P7, P8, P9, P10 compared to normoxic ((p=0,004, p=0,001, p=0,009, p=0,013, p=0,024. There is a significant difference in the senescence expression of each passage in hypoxic and normoxic conditions with the highest expression at P10. In addition, we also observed AMSCs differentiation through the Oct-4 expression. It is showed that Oct-4 expression were higher in hypoxia compared to normoxia on P7, P8, P9, P10 (p=0,009, p=0,009, p=0,030, p=0,0001). Conclusions : Hypoxic preconditioning have the effect of inhibiting the senescence process on Adipose-derived MSCs (AMSCs) or prolonging their life span. The longer life span of AMSCs is also seen by higher cell differentiation potential from increased expression of Oct-4. However, the mechanism of inhibiting the senescence process in hypoxia in stem cells is still remain unknown. Keywords: human-Adipose derived Mesenchymal Stem Cell Cultures (h-AMSCs), Hypoxic Preconditioning, Senescence cell, Oct-4.

2019 ◽  
Vol 7 (4) ◽  
pp. 507-515 ◽  
Author(s):  
Eman E. A. Mohammed ◽  
Mohamed El-Zawahry ◽  
Abdel Razik H. Farrag ◽  
Nahla N. Abdel Aziz ◽  
Wessam Sharaf-ElDin ◽  
...  

BACKGROUND: Cell therapies offer a promising potential in promoting bone regeneration. Stem cell therapy presents attractive care modality in treating degenerative conditions or tissue injuries. The rationale behind this is both the expansion potential of stem cells into a large cell population size and its differentiation abilities into a wide variety of tissue types, when given the proper stimuli. A progenitor stem cell is a promising source of cell therapy in regenerative medicine and bone tissue engineering. AIM: This study aimed to compare the osteogenic differentiation and regenerative potentials of human mesenchymal stem cells derived from human bone marrow (hBM-MSCs) or amniotic fluid (hAF-MSCs), both in vitro and in vivo studies. SUBJECTS AND METHODS: Human MSCs, used in this study, were successfully isolated from two human sources; the bone marrow (BM) and amniotic fluid (AF) collected at the gestational ages of second or third trimesters. RESULTS: The stem cells derived from amniotic fluid seemed to be the most promising type of progenitor cells for clinical applications. In a pre-clinical experiment, attempting to explore the therapeutic application of MSCs in bone regeneration, Rat lumbar spines defects were surgically created and treated with undifferentiated and osteogenically differentiated MSCs, derived from BM and second trimester AF. Cells were loaded on gel-foam scaffolds, inserted and fixed in the area of the surgical defect. X-Ray radiography follows up, and histopathological analysis was done three-four months post- operation. The transplantation of AF-MSCs or BM-MSCs into induced bony defects showed promising results. The AF-MSCs are offering a better healing effect increasing the likelihood of achieving successful spinal fusion. Some bone changes were observed in rats transplanted with osteoblasts differentiated cells but not in rats transplanted with undifferentiated MSCs. Longer observational periods are required to evaluate a true bone formation. The findings of this study suggested that the different sources; hBM-MSCs or hAF-MSCs exhibited remarkably different signature regarding the cell morphology, proliferation capacity and osteogenic differentiation potential CONCLUSIONS: AF-MSCs have a better performance in vivo bone healing than that of BM-MSCs. Hence, AF derived MSCs is highly recommended as an alternative source to BM-MSCs in bone regeneration and spine fusion surgeries. Moreover, the usage of gel-foam as a scaffold proved as an efficient cell carrier that showed bio-compatibility with cells, bio-degradability and osteoinductivity in vivo.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Mohammed Zayed ◽  
Steven Newby ◽  
Nabil Misk ◽  
Robert Donnell ◽  
Madhu Dhar

Horses are widely used as large animal preclinical models for cartilage repair studies, and hence, there is an interest in using equine synovial fluid-derived mesenchymal stem cells (SFMSCs) in research and clinical applications. Since, we have previously reported that similar to bone marrow-derived MSCs (BMMSCs), SFMSCs may also exhibit donor-to-donor variations in their stem cell properties; the current study was carried out as a proof-of-concept study, to compare the in vivo potential of equine BMMSCs and SFMSCs in articular cartilage repair. MSCs from these two sources were isolated from the same equine donor. In vitro analyses confirmed a significant increase in COMP expression in SFMSCs at day 14. The cells were then encapsulated in neutral agarose scaffold constructs and were implanted into two mm diameter full-thickness articular cartilage defect in trochlear grooves of the rat femur. MSCs were fluorescently labeled, and one week after treatment, the knee joints were evaluated for the presence of MSCs to the injured site and at 12 weeks were evaluated macroscopically, histologically, and then by immunofluorescence for healing of the defect. The macroscopic and histological evaluations showed better healing of the articular cartilage in the MSCs’ treated knee than in the control. Interestingly, SFMSC-treated knees showed a significantly higher Col II expression, suggesting the presence of hyaline cartilage in the healed defect. Data suggests that equine SFMSCs may be a viable option for treating osteochondral defects; however, their stem cell properties require prior testing before application.


2020 ◽  
Vol 133 (4) ◽  
pp. 1182-1190 ◽  
Author(s):  
Visish M. Srinivasan ◽  
Joy Gumin ◽  
Kevin M. Camstra ◽  
Stephen R. Chen ◽  
Jeremiah N. Johnson ◽  
...  

OBJECTIVEBone marrow–derived human mesenchymal stem cells (BM-hMSCs) have been used in clinical trials for the treatment of several neurological disorders. MSCs have been explored as a delivery modality for targeted viral therapeutic agents in the treatment of intracranial pathologies. Delta-24-RGD, a tumor-selective oncolytic adenovirus designed to target malignant glioma cells, has been shown to be effective in animal models and in a recent clinical trial. However, the most efficient strategy for delivering oncolytic therapies remains unclear. BM-hMSCs have been shown to home toward glioma xenografts after intracarotid delivery. The feasibility of selective intraarterial infusion of BM-hMSCs loaded with Delta-24-RGD (BM-hMSC-Delta-24) to deliver the virus to the tumor is being investigated. To evaluate the feasibility of endovascular intraarterial delivery, the authors tested in vitro the compatibility of BM-hMSC-Delta-24 with a variety of commercially available, clinically common microcatheters.METHODSBM-hMSCs were cultured, transfected with Delta-24-RGD, and resuspended in 1% human serum albumin. The solution was then injected via 4 common neuroendovascular microcatheters of different inner diameters (Marathon, Echelon-14, Marksman, and SL-10). Cell count and viability after injection through the microcatheters were assessed, including tests of injection velocity and catheter configuration. Transwell assays were performed with the injected cells to test the efficacy of BM-hMSC-Delta-24 activity against U87 glioma cells. BM-hMSC-Delta-24 compatibility was also tested with common neuroendovascular medications: Omnipaque, verapamil, and heparin.RESULTSThe preinfusion BM-hMSC-Delta-24 cell count was 1.2 × 105 cells/ml, with 98.7% viability. There was no significant difference in postinfusion cell count or viability for any of the catheters. Increasing the injection velocity from 1.0 ml/min to 73.2 ml/min, or modifying the catheter shape from straight to tortuous, did not significantly reduce cell count or viability. Cell count and viability remained stable for up to 5 hours when the cell solution was stored on ice. Mixing BM-hMSC-Delta-24 with clinical concentrations of Omnipaque, verapamil, and heparin prior to infusion did not alter cell count or viability. Transwell experiments demonstrated that the antiglioma activity of BM-hMSC-Delta-24 was maintained after infusion.CONCLUSIONSBM-hMSC-Delta-24 is compatible with a wide variety of microcatheters and medications commonly used in neuroendovascular therapy. Stem cell viability and viral agent activity do not appear to be affected by catheter configuration or injection velocity. Commercially available microcatheters can be used to deliver stem cell neurotherapeutics via intraarterial routes.


Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1873 ◽  
Author(s):  
Andrea Remuzzi ◽  
Barbara Bonandrini ◽  
Matteo Tironi ◽  
Lorena Longaretti ◽  
Marina Figliuzzi ◽  
...  

Stem cell fate and behavior are affected by the bidirectional communication of cells and their local microenvironment (the stem cell niche), which includes biochemical cues, as well as physical and mechanical factors. Stem cells are normally cultured in conventional two-dimensional monolayer, with a mechanical environment very different from the physiological one. Here, we compare culture of rat mesenchymal stem cells on flat culture supports and in the “Nichoid”, an innovative three-dimensional substrate micro-engineered to recapitulate the architecture of the physiological niche in vitro. Two versions of the culture substrates Nichoid (single-layered or “2D Nichoid” and multi-layered or “3D Nichoid”) were fabricated via two-photon laser polymerization in a biocompatible hybrid organic-inorganic photoresist (SZ2080). Mesenchymal stem cells, isolated from rat bone marrow, were seeded on flat substrates and on 2D and 3D Nichoid substrates and maintained in culture up to 2 weeks. During cell culture, we evaluated cell morphology, proliferation, cell motility and the expression of a panel of 89 mesenchymal stem cells’ specific genes, as well as intracellular structures organization. Our results show that mesenchymal stem cells adhered and grew in the 3D Nichoid with a comparable proliferation rate as compared to flat substrates. After seeding on flat substrates, cells displayed large and spread nucleus and cytoplasm, while cells cultured in the 3D Nichoid were spatially organized in three dimensions, with smaller and spherical nuclei. Gene expression analysis revealed the upregulation of genes related to stemness and to mesenchymal stem cells’ features in Nichoid-cultured cells, as compared to flat substrates. The observed changes in cytoskeletal organization of cells cultured on 3D Nichoids were also responsible for a different localization of the mechanotransducer transcription factor YAP, with an increase of the cytoplasmic retention in cells cultured in the 3D Nichoid. This difference could be explained by alterations in the import of transcription factors inside the nucleus due to the observed decrease of mean nuclear pore diameter, by transmission electron microscopy. Our data show that 3D distribution of cell volume has a profound effect on mesenchymal stem cells structure and on their mechanobiological response, and highlight the potential use of the 3D Nichoid substrate to strengthen the potential effects of MSC in vitro and in vivo.


2015 ◽  
Vol 114 (10) ◽  
pp. 735-747 ◽  
Author(s):  
Marilyne Levy ◽  
Lan Huang ◽  
Elisa Rossi ◽  
Adeline Blandinières ◽  
Dominique Israel-Biet ◽  
...  

SummaryPulmonary vasodilators and prostacyclin therapy in particular, have markedly improved the outcome of patients with pulmonary hypertension (PH). Endothelial dysfunction is a key feature of PH, and we previously reported that treprostinil therapy increases number and proliferative potential of endothelial colony forming cells (ECFC) isolated from PH patients’ blood. In the present study, the objective was to determine how treprostinil contributes to the proangiogenic functions of ECFC. We examined the effect of treprostinil on ECFC obtained from cord blood in terms of colony numbers, proliferative and clonogenic properties in vitro, as well as in vivo vasculogenic properties. Surprisingly, treprostinil inhibited viability of cultured ECFC but did not modify their clonogenic properties or the endothelial differentiation potential from cord blood stem cells. Treprostinil treatment significantly increased the vessel-forming ability of ECFC combined with mesenchymal stem cells (MSC) in Matrigel implanted in nude mice. In vitro, ECFC proliferation was stimulated by conditioned media from treprostinil-pretreated MSC, and this effect was inhibited either by the use of VEGF-A blocking antibodies or siRNA VEGF-A in MSC. Silencing VEGF-A gene in MSC also blocked the pro-angiogenic effect of treprostinil in vivo. In conclusion, increased VEGF-A produced by MSC can account for the increased vessel formation observed during treprostinil treatment. The clinical relevance of these data was confirmed by the high level of VEGF-A detected in plasma from patients with paediatric PH who had been treated with treprostinil. Moreover, our results suggest that VEGF-A level in patients could be a surrogate biomarker of treprostinil efficacy.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Ramin M. Farahani ◽  
Munira Xaymardan

Three decades on, the mesenchymal stem cells (MSCs) have been intensively researched on the bench top and used clinically. However, ambiguity still exists in regard to their anatomical locations, identities, functions, and extent of their differentiative abilities. One of the major impediments in the quest of the MSC research has been lack of appropriatein vivomarkers. In recent years, this obstacle has been resolved to some degree as PDGFRαemerges as an important mesenchymal stem cell marker. Accumulating lines of evidence are showing that the PDGFRα+cells reside in the perivascular locations of many adult interstitium and fulfil the classic concepts of MSCsin vitroandin vivo. PDGFRαhas long been recognised for its roles in the mesoderm formation and connective tissue development during the embryogenesis. Current review describes the lines of evidence regarding the role of PDGFRαin morphogenesis and differentiation and its implications for MSC biology.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4374-4374
Author(s):  
Roshanak Ghazanfari ◽  
Hongzhe Li ◽  
Dimitra Zacharaki ◽  
Simón Méndez-Ferrer ◽  
Stefan Scheding

Abstract Human bone marrow contains a rare population of non-hematopoietic mesenchymal stromal cells (BM-MSC) with multilineage differentiation capacity, which are essential constituents of the hematopoietic microenvironment. Self-renewal and differentiation are the two key properties of somatic stem cells, however, stem cell properties of human adult BM-MSC have not been demonstrated conclusively yet. We have previously shown that low/negative expression of PDGFRα on linneg/CD45neg/CD271pos cells identified a highly enriched population of primary BM-MSC in adult human bone marrow (Li et al. Blood, 2013, 122:3699). Based on this work, the current study aimed to investigate the in-vitro and in-vivo stem cell properties of this putative stromal stem cell population. The in-vitro clonogenic potential of freshly sorted human linneg/CD45neg/CD271pos/PDGFRlow/neg cells was evaluated by utilizing the CFU-F assay as well as the recently-developed mesensphere assay, which enables MSC amplification while preserving an immature phenotype (Isern et al, Cell Reports 2013, 30: 1714-24). Comparable colony frequencies were obtained with both assays (19.3 ± 2 and 17.5 ± 2.3 CFU-F and spheres per 100 plated cells, respectively, n=6, p=0.19). In order to test whether both assays identified the same population of clonogenic cells, colonies and spheres were replated under both conditions for up to three generations. The results showed comparable capacities of CFU-F and mesenspheres to form secondary and tertiary CFU-F and spheres. In-vitro self-renewal as indicated by increasing numbers of CFU-F and spheres (416.6 ± 431.7-fold and 49.5 ± 65.7-fold, respectively, n=3) was observed up to the third generation and decreased thereafter. The total number of generations was five (CFU-F) and six (spheres). In-vitro differentiation assays with both, CFU-F- and sphere-derived cells (tested until passage three) demonstrated tri-lineage differentiation potential (adipocytes, osteoblasts, chondrocytes). In addition, CFU-Fs and spheres had comparable surface marker profiles (CD73, CD90, CD105, and HLA-ABC positive; CD31, CD34 and HLA-DR negative), except for CD90, which was higher expressed on CFU-Fs. To investigate in-vivo self-renewal and differentiation potential of the putative stromal stem cells, linneg/CD45neg/CD271pos/PDGFRlow/neg -derived CFU-F and spheres were serially transplanted s.c into NSG mice. After 8 weeks, implants were harvested, human cells were FACS-isolated (CD90 and CD105 expression), and re-assayed under CFU-F and sphere conditions. Whereas in-vivo self-renewal of CFU-F could not be shown (111.5 ± 36 –fold decrease in total CFU-F numbers after primary transplantation, n=3), sphere self-renewal was clearly demonstrated by increased numbers of spheres after primary as well as secondary transplantation (1.13 ± 0.05 and 2.06 ± 0.26 –fold, respectively, n=3), which is remarkable given the fact that the number of recovered human cells is underestimated due to the isolation approach. Here, confirming GFP-marking experiments are ongoing. Finally, preliminary data indicate that linneg/CD45neg/CD271pos/PDGFRlow/neg –derived spheres display full in-vivo differentiation capacity in primary and secondary transplantations. Taken together, our data demonstrate - for the first time - that primary human linneg/CD45neg/CD271pos/PDGFRlow/neg cells meet stringent stem cell criteria, i.e. in-vitro and in-vivo self-renewal and differentiation. These findings answer the long-open question of the potential stem cell properties of adult human MSC and will enable to better understand the properties of native BM-MSC and their biological role in the bone marrow. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 9 (F) ◽  
pp. 492-504
Author(s):  
Sholahuddin Rhatomy ◽  
Riky Setyawan ◽  
Michael Aaron Romulo

BACKGROUND: Cartilage tear has begun to be treated with stem cells. However, stem cell oxygen level culture has not been evaluated for the best environment to enhance chondrogenesis. AIM: The purpose of this review is to focus on the hypoxic oxygen level of stem cells culture as a treatment for cartilage tear. METHODS: A literature search was systemically conducted on PubMed (MEDLINE), OVID, EMBASE, the Cochrane Library, Scopus, Web of Science, Science Direct, Wiley Online Library, Google Scholar, and bibliography of selected articles with the terms (“culture”) AND (“stem cell” OR “mesenchymal stem cell” OR “MSC”) AND (“hypoxic” OR “hypoxia”) AND (“cartilage” OR “chondro*”) as the main keywords. A total of 438 articles were reviewed. Thirty-six articles were considered relevant for this systematic review. RESULTS: The result of this review supports stimulation effects of hypoxic oxygen level stem cell culture in chondrogenesis process. Most studies used 5% oxygen concentration for culture, both of in vivo and in vitro studies. Due to the heterogeneity nature of the included studies, meta-analysis was unable to be conducted. CONCLUSION: Hypoxia state seems to play an important role in chondrocytes proliferation, differentiation, and matrix production.


2021 ◽  
Author(s):  
Huina Luo ◽  
Dongsheng Li ◽  
Zhisheng Chen ◽  
Bingyun Wang ◽  
Shengfeng Chen

Abstract BACKGROUND: Mesenchymal stem cells (MSCs) have generated a great amount of interest in recent years as a novel therapeutic application for improving the quality of pet life and helping them free from painful conditions and diseases. It has now become critical to address the challenges related to the safety and efficacy of MSCs expanded in vitro. In this study, we establish a standardized process for manufacture of canine adipose-derived MSCs (AD-MSCs), including tissue sourcing, cell isolation and culture, cryopreservation, thawing and expansion, quality control and testing, and evaluate the safety and efficacy of those cells for clinical applications. RESULTS: After expansion, the viability of AD-MSCs manufactured under our standardized process was above 90 %. Expression of surface markers and differentiation potential was consistent with ISCT standards. Sterility, mycoplasma, and endotoxin tests were consistently negative. AD-MSCs presented normal karyotype, and did not form in vivo tumors. No adverse events were noted in two cases treated with intravenously AD-MSCs. CONCLUSION: Herein we demonstrated the establishment of a feasible bioprocess for manufacturing and banking canine AD-MSCs for veterinary clinical use.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Boxian Huang ◽  
Chunfeng Qian ◽  
Chenyue Ding ◽  
Qingxia Meng ◽  
Qinyan Zou ◽  
...  

Abstract Background With the development of regenerative medicine and tissue engineering technology, almost all stem cell therapy is efficacious for the treatment of premature ovarian failure (POF) or premature ovarian insufficiency (POI) animal models, whereas little stem cell therapy has been practiced in clinical settings. The underlying molecular mechanism and safety of stem cell treatment in POI are not fully understood. In this study, we explored whether fetal mesenchymal stem cells (fMSCs) from the liver restore ovarian function and whether melatonin membrane receptor 1 (MT1) acts as a regulator for treating POI disease. Methods We designed an in vivo model (chemotherapy-induced ovary damage) and an in vitro model (human ovarian granulosa cells (hGCs)) to understand the efficacy and molecular cues of fMSC treatment of POI. Follicle development was observed by H&E staining. The concentration of sex hormones in serum (E2, AMH, and FSH) and the concentration of oxidative and antioxidative metabolites and the enzymes MDA, SOD, CAT, LDH, GR, and GPx were measured by ELISA. Flow cytometry (FACS) was employed to detect the percentages of ROS and proliferation rates. mRNA and protein expression of antiapoptotic genes (SURVIVIN and BCL2), apoptotic genes (CASPASE-3 and CASPASE-9), and MT1 and its downstream genes (JNK1, PCNA, AMPK) were tested by qPCR and western blotting. MT1 siRNA and related antagonists were used to assess the mechanism. Results fMSC treatment prevented cyclophosphamide (CTX)-induced follicle loss and recovered sex hormone levels. Additionally, fMSCs significantly decreased oxidative damage, increased oxidative protection, improved antiapoptotic effects, and inhibited apoptotic genes in vivo and in vitro. Furthermore, fMSCs also upregulated MT1, JNK1, PCNA, and AMPK at the mRNA and protein levels. With MT1 knockdown or antagonist treatment in normal hGCs, the protein expression of JNK1, PCNA, and AMPK and the percentage of proliferation were impaired. Conclusions fMSCs might play a crucial role in mediating follicular development in the POI mouse model and stimulating the activity of POI hGCs by targeting MT1.


Sign in / Sign up

Export Citation Format

Share Document