scholarly journals Tanshinone IIA enhances bystander cell killing of cancer cells expressing Drosophila melanogaster deoxyribonucleoside kinase in nuclei and mitochondria

2015 ◽  
Vol 34 (3) ◽  
pp. 1487-1493 ◽  
Author(s):  
HAIYANG JIANG ◽  
LEI ZHAO ◽  
XIAOSHEN DONG ◽  
ANNING HE ◽  
CAIWEI ZHENG ◽  
...  
2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A635-A635
Author(s):  
Jeffrey Zhang ◽  
Everett Henry ◽  
L Harris Zhang ◽  
Wanying Zhang

BackgroundResveratrol (3,4’,5-trihydroxystilbene), a stilbenoid isolated from many species of plants, is widely known for its antioxidative, anti-inflammatory, immunomodulatory and anticancer activities. Recently, novel resveratrol oligomers have been isolated from various plants; their diverse structures are characterized by the polymerization of two or more resveratrol units. Little is known regarding the anticancer and immunomodulating activities of these oligomers. In this study, we designed in vitro models to compare resveratrol side by side with its natural dimer NBT-167 for their anticancer and immunological activities.MethodsWe isolated resveratrol and its dimer (NBT-167) from plants. The potency of the compounds was compared side by side using cancer cell survival assays and immunological assays with various types of human cells including cancer cell lines, PBMCs and enriched NK, gamma delta T cells, THP-1 monocytic cells, HL-60 promyelocytic leukemia cells as well as mouse RAW264.7 macrophages.ResultsNBT-167 was found to be more potent than resveratrol in inhibiting growth of various cancer cells and modulation of cytokine production from anti-IgM, LPS, PHA or SEB stimulated PBMC. Both compounds similarly enhanced IL-2 stimulated NK and gamma delta T cell killing activity against K562 cells and modulated nitric oxide production from LPS/IFN-g induced RAW264.7 macrophages and phagocytotic activity of HL-60 cells. NBT-167 was slightly more potently than resveratrol in inhibiting chemotaxis of HL-60 cells and blocking cell cycle of THP-1 and HL-60 cells at G1/S transition. In addition, NBT-167, but not resveratrol, could increase IL-2 production and T cell proliferation stimulated with anti-CD3 and anti-CD28 and synergize with anti-PD-1 antibody to increase IL-2 and IFN-gamma production in co-culture of allotypic T cells and dendric cells (MLR).ConclusionsOur data showed that NBT-167, a dimer of resveratrol, had anticancer and immunomodulatory activities such as modulation of expression of cytokines in immune cells and induction of cancer cell-killing activities of NK and gamma delta T cells. Generally, NBT-167 appeared to have higher activities than resveratrol in modulating immune cells and inhibiting cancer cells. NBT-167 could be a promising cancer immunotherapeutic agent targeting both cancer cells and immune cells.


2014 ◽  
Vol 15 (9) ◽  
pp. 15622-15637 ◽  
Author(s):  
Sheng-Chun Chiu ◽  
Sung-Ying Huang ◽  
Shu-Fang Chang ◽  
Shee-Ping Chen ◽  
Chi-Cheng Chen ◽  
...  

2013 ◽  
Vol 179 (2) ◽  
pp. 200-207 ◽  
Author(s):  
Masanori Tomita ◽  
Munetoshi Maeda ◽  
Katsumi Kobayashi ◽  
Hideki Matsumoto

2019 ◽  
Vol 4 ◽  
Author(s):  
Phat Do

Breast cancer (BC) is the second most commonly diagnosed cancer in women in the world. In 2018, there were more than 2 million new diagnosis. It is estimated that1 in 8 women will develop invasive breast cancer over the course of her lifetime. Traditional treatments of BC include surgery, radiation, and chemotherapy therapy; however, these treatments are non-specific and potentially kill peripheral, healthy cells. More specific treatments are needed, most notably to target a unique feature of the cancer cells. Interestingly, 70% of BC cells upregulate estradiol-dependent pathway, a characteristic essential for rapid cell growth. Current BC drugs, such as Tamoxifen, Faslodex, or Femarahave targeted this pathway to preferentially kill BC cells. However, the problems with these drugs are two-fold. (1) Drugs produce considerable side effects. For example, Femera causes considerable musculoskeletal failures. Tamoxifen is also shown to produce secondary cancer growth, such as endometrial cancer. (2) Breast cancer cells resist drugs very quickly. For instance, one third of women who are treated with Tamoxifen for five years relapse within fifteen years. The resulting tumor then become resistant to Tamoxifen treatment. For these two reasons, there is a need for new chemotherapeutic drugs. Our research group studies a novel estrogen-receptor targeting drug: Estradiol-R-Melex. This compound has the estradiol molecule linked to a DNA alkylating agent, Melex. We connected the two moieties using a linker consisting of various lengths, i.e., one, two, and three methyl groups. The linker length variation is to optimize the cell killing property of our small drug molecule. We hypothesize that Est-n-Melex enters the ER positive cancer cells more rapidly than ER-normal cells.


Antioxidants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 694
Author(s):  
Jen-Yang Tang ◽  
Kuang-Han Wu ◽  
Yen-Yun Wang ◽  
Ammad Ahmad Farooqi ◽  
Hurng-Wern Huang ◽  
...  

Some lichens provide the resources of common traditional medicines and show anticancer effects. However, the anticancer effect of Usnproliea barbata (U. barbata) is rarely investigated, especially for oral cancer cells. The aim of this study was to investigate the cell killing function of methanol extracts of U. barbata (MEUB) against oral cancer cells. MEUB shows preferential killing against a number of oral cancer cell lines (Ca9-22, OECM-1, CAL 27, HSC3, and SCC9) but rarely affects normal oral cell lines (HGF-1). Ca9-22 and OECM-1 cells display the highest sensitivity to MEUB and were chosen for concentration effect and time course experiments to address its cytotoxic mechanisms. MEUB induces apoptosis of oral cancer cells in terms of the findings from flow cytometric assays and Western blotting, such as subG1 accumulation, annexin V detection, and pancaspase activation as well as poly (ADP-ribose) polymerase (PARP) cleavage. MEUB induces oxidative stress and DNA damage of oral cancer cells following flow cytometric assays, such as reactive oxygen species (ROS)/mitochondrial superoxide (MitoSOX) production, mitochondrial membrane potential (MMP) depletion as well as overexpression of γH2AX and 8-oxo-2′deoxyguanosine (8-oxodG). All MEUB-induced changes in oral cancer cells were triggered by oxidative stress which was validated by pretreatment with antioxidant N-acetylcysteine (NAC). In conclusion, MEUB causes preferential killing of oral cancer cells and is associated with oxidative stress, apoptosis, and DNA damage.


Sign in / Sign up

Export Citation Format

Share Document