scholarly journals Myristoylated alanine rich protein kinase�C substrate is a potential cancer prognostic factor that regulates cell migration and invasion in glioblastoma

2019 ◽  
Author(s):  
Wei Xiang ◽  
Tao Peng ◽  
Yang Ming ◽  
Shenjie Li ◽  
Ke Wang ◽  
...  
1999 ◽  
Vol 277 (3) ◽  
pp. E433-E438 ◽  
Author(s):  
Satoshi Shigematsu ◽  
Keishi Yamauchi ◽  
Kohji Nakajima ◽  
Sachiko Iijima ◽  
Toru Aizawa ◽  
...  

Effects of highd-glucose and insulin on the endothelial cell migration and tubular formation were investigated with the use of ECV304 cells, a clonal human umbilical cord endothelial cell line. Exposure of the cells to highd-glucose resulted in a marked increase in the migration, which was blocked by inhibitors of protein kinase C such as H7 (10 μM) and GF109203X (200 nM). Furthermore, a protein kinase C agonist, phorbol 12-myristate 13-acetate, had an effect similar to that of glucose on ECV304 cells. Glucose stimulation of the migration was additively enhanced by 100 nM insulin, and the insulin effect was found to be unaffected by either PD-98059 or wortmannin, a mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase inhibitor and a phosphatidylinositol 3-kinase inhibitor, respectively. Neither did H7 inhibit insulin stimulation of the migration. In contrast, a combination of high d-glucose and insulin, rather than either one alone, promoted tubular formation, which was inhibited by addition of 10 μM PD-98059. Stimulation of ECV304 cells by the combination of highd-glucose and insulin also caused an activation of MAPK, which was again obliterated by the same concentration of PD-98059. In conclusion, human endothelial cell migration and tubular formation are stimulated by highd-glucose and insulin in different ways. In the former reaction, either is effective, a combination of the two results in an additive effect, and activation of protein kinase C is involved. In contrast, tubular formation will only occur in the presence of a combination of highd-glucose and insulin, and MAPK plays an essential role.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1584-1584 ◽  
Author(s):  
Klaus Podar ◽  
Marc S. Raab ◽  
Dean Abtahi ◽  
Yu-Tzu Tai ◽  
Boris Lin ◽  
...  

Abstract Members of the protein kinase C (PKC) family of serine- threonine protein kinases mediate multiple physiological functions including differentiation, growth and survival, invasiveness, angiogenesis and drug efflux. Dysregulation of PKC signaling has been implicated in tumor progression and prompted the development of novel anticancer therapeutics. In multiple myeloma (MM) PKC isoforms are: (1) involved in MM cell apoptosis; (2) associated with VEGF- and Wnt- induced MM cell migration; and (3) controlling shedding of IL-6 receptor alpha. However, to date the potential of targeting PKC signaling sequelae in MM has not been evaluated. Here we investigated the novel orally available protein- kinase C (PKC) inhibitor Enzastaurin (Eli Lilly and Company) for its therapeutic efficacy in MM. We first tested the ability of Enzastaurin to suppress MM cell proliferation in a wide array of MM cell lines. Our data show that Enzastaurin inhibits 3H[dT] uptake in all cell lines tested in a low micromolar range equivalent to the concentration range achieved in the patient plasma during clinical trials. Importantly, Enzastaurin also abrogates MM cell proliferation in a BMSC-MM coculture system. We next sought to determine whether Enzastaurin can inhibit cell survival and found dose- dependent induction of MM cell apoptosis in MM cell lines MM.1S, MM.1R, OPM-1, OPM-2, RPMI-8226, and RPMI-dox40. Moreover, Enzastaurin significantly inhibited VEGF- induced MM cell migration on fibronectin. Importantly, IGF-1- induced MM cell migration was abrogated by Enzastaurin, demonstrating the requirement of PKC. Signaling pathways mediating these effects were next examined: Our data show that Enzastaurin abrogates phosphorylation of Akt and GSK3beta, which is required for MM cell growth and migration. Furthermore, ongoing studies are evaluating the efficacy of Enzastaurin in a murine model of human MM. Taken together, these studies show for the first time the preclinical efficacy of the orally available PKC inhibitor Enzastaurin providing the basis for its clinical evaluation to improve patient outcome in MM.


2012 ◽  
Vol 199 (2) ◽  
pp. 331-345 ◽  
Author(s):  
Shujie Wang ◽  
Takashi Watanabe ◽  
Kenji Matsuzawa ◽  
Akira Katsumi ◽  
Mai Kakeno ◽  
...  

Migrating cells acquire front-rear polarity with a leading edge and a trailing tail for directional movement. The Rac exchange factor Tiam1 participates in polarized cell migration with the PAR complex of PAR3, PAR6, and atypical protein kinase C. However, it remains largely unknown how Tiam1 is regulated and contributes to the establishment of polarity in migrating cells. We show here that Tiam1 interacts directly with talin, which binds and activates integrins to mediate their signaling. Tiam1 accumulated at adhesions in a manner dependent on talin and the PAR complex. The interactions of talin with Tiam1 and the PAR complex were required for adhesion-induced Rac1 activation, cell spreading, and migration toward integrin substrates. Furthermore, Tiam1 acted with talin to regulate adhesion turnover. Thus, we propose that Tiam1, with the PAR complex, binds to integrins through talin and, together with the PAR complex, thereby regulates Rac1 activity and adhesion turnover for polarized migration.


2014 ◽  
Vol 42 (6) ◽  
pp. 1490-1497 ◽  
Author(s):  
Aideen Long ◽  
Michael Freeley

Protein kinase C (PKC) is a family of ten serine/threonine kinases that have diverse roles in the signalling pathways regulating cellular proliferation, differentiation, apoptosis and immune responses. Elucidating roles for individual PKC isoforms in the immune responses of T-cells have long been a challenging prospect, because these cells are known to express nine of these isoforms. A variety of approaches including the use of knockout mice, overexpression of kinase-inactive mutants, cell-permeable peptides, pharmacological inhibitors and siRNAs have shown that PKCs regulate the production of inflammatory cytokines and the cytotoxic responses of various T-cell subsets. Central to the T-cell immune response is a requirement to migrate to various organs and tissues in search of pathogens and micro-organisms. T-cell migration is guided by specific sets of chemokines and integrin ligands that activate their cognate chemokine receptors and integrins on T-cells, resulting in remodelling of the cytoskeleton and the dynamic protrusive/contractile forces necessary for cell adhesion and motility. In the present article, we review the role of PKC in T-cell migration, with an emphasis on studies that have defined their roles in cytoskeletal remodelling, cell polarity and intracellular trafficking downstream of chemokine receptors and integrins.


Sign in / Sign up

Export Citation Format

Share Document