scholarly journals The Cassidinae beetles of Longnan County (Jiangxi, China): overview and community composition

2019 ◽  
Vol 7 ◽  
Author(s):  
Peng Liu ◽  
Chengqing Liao ◽  
Jiasheng Xu ◽  
Charles L. Staines ◽  
Xiaohua Dai

There are few reports on the community composition and diversity pattern of the Cassidinae species of China. Compared to the neighbouring provinces of Guangdong, Fujian and Zhejiang, the Cassidinae richness in Jiangxi Province is under-reported. Longnan City, a biodiversity hotspot in Jiangxi Province, was chosen to obtain the first overview of the Cassidinae beetles. The sample coverage curves for the three sample sites reached an asymptote which indicated sampling was sufficient for data analysis. A total of eight tribes, 16 genera, 59 species and 1590 individuals of Cassidinae beetles were collected. Most belonged to the tribe Hispini (1121 individuals; 70.5%), followed by the tribe Cassidini (161 individuals; 10.13%) and the tribe Oncocephalini (159 individuals; 10.0%). The remainder (149 individuals) belonged to five tribes (Gonophorini, Basiprionotini, Callispini, Notosacanthini and Aspidimorphini). The tribes Notosacanthini, Aspidimorphini and Oncocephalini were newly recorded for Jiangxi Province. There were 14 families, 27 genera and 39 species of host plants of Cassidinae beetles in Longnan County. Cassidinae larvae mainly feed on the plant families Poaceae, Rosaceae, Lamiaceae and Rubiaceae. Most host-plant associations are new reords for the beetle species. This research, together with our planned future work in China, may help to explain the geographical distribution, diversity patterns and host plant associations of these beetles.


ZooKeys ◽  
2019 ◽  
Vol 856 ◽  
pp. 51-73 ◽  
Author(s):  
Matilda W. Gikonyo ◽  
Maurizio Biondi ◽  
Franziska Beran

The cosmopolitan flea beetle genera Phyllotreta and Psylliodes (Galerucinae, Alticini) are mainly associated with host plants in the family Brassicaceae and include economically important pests of crucifer crops. In this review, the host plant associations and geographical distributions of known species in these genera are summarised from the literature, and their proposed phylogenetic relationships to other Alticini analysed from published molecular phylogenetic studies of Galerucinae. Almost all Phyllotreta species are specialised on Brassicaceae and related plant families in the order Brassicales, whereas Psylliodes species are associated with host plants in approximately 24 different plant families, and 50% are specialised to feed on Brassicaceae. The current knowledge on how Phyllotreta and Psylliodes are adapted to the characteristic chemical defence in Brassicaceae is reviewed. Based on our findings we postulate that Phyllotreta and Psylliodes colonised Brassicaceae independently from each other.



2008 ◽  
Vol 276 (1657) ◽  
pp. 639-648 ◽  
Author(s):  
José A Jurado-Rivera ◽  
Alfried P Vogler ◽  
Chris A.M Reid ◽  
Eduard Petitpierre ◽  
Jesús Gómez-Zurita

Short-sequence fragments (‘DNA barcodes’) used widely for plant identification and inventorying remain to be applied to complex biological problems. Host–herbivore interactions are fundamental to coevolutionary relationships of a large proportion of species on the Earth, but their study is frequently hampered by limited or unreliable host records. Here we demonstrate that DNA barcodes can greatly improve this situation as they (i) provide a secure identification of host plant species and (ii) establish the authenticity of the trophic association. Host plants of leaf beetles (subfamily Chrysomelinae) from Australia were identified using the chloroplast trnL (UAA) intron as barcode amplified from beetle DNA extracts. Sequence similarity and phylogenetic analyses provided precise identifications of each host species at tribal, generic and specific levels, depending on the available database coverage in various plant lineages. The 76 species of Chrysomelinae included—more than 10 per cent of the known Australian fauna—feed on 13 plant families, with preference for Australian radiations of Myrtaceae (eucalypts) and Fabaceae (acacias). Phylogenetic analysis of beetles shows general conservation of host association but with rare host shifts between distant plant lineages, including a few cases where barcodes supported two phylogenetically distant host plants. The study demonstrates that plant barcoding is already feasible with the current publicly available data. By sequencing plant barcodes directly from DNA extractions made from herbivorous beetles, strong physical evidence for the host association is provided. Thus, molecular identification using short DNA fragments brings together the detection of species and the analysis of their interactions.



Zootaxa ◽  
2008 ◽  
Vol 1728 (1) ◽  
pp. 1 ◽  
Author(s):  
KARL N. MAGNACCA ◽  
DAVID FOOTE ◽  
PATRICK M. O’GRADY

The Hawaiian Drosophilidae is one of the best examples of rapid speciation in nature. Nearly 1,000 species of endemic drosophilids have evolved in situ in Hawaii since a single colonist arrived over 25 million years ago. A number of mechanisms, including ecological adaptation, sexual selection, and geographic isolation, have been proposed to explain the evolution of this hyperdiverse group of species. Here, we examine the known ecological associations of 326 species of endemic Hawaiian Drosophilidae in light of the phylogenetic relationships of these species. Our analysis suggests that the long-accepted belief of strict ecological specialization in this group does not hold for all taxa. While many species have a primary host plant family, females will also oviposit on non-preferred host plant taxa. Host shifting is fairly common in some groups, especially the grimshawi and modified mouthparts species groups of Drosophila, and the Scaptomyza subgenus Elmomyza. Associations with types of substrates (bark, leaves, flowers) are more evolutionarily conserved than associations with host plant families. These data not only give us insight into the role ecology has played in the evolution of this large group, but can help in making decisions about the management of rare and endangered host plants and the insects that rely upon them for survival.



2018 ◽  
Vol 32 (4) ◽  
pp. 866 ◽  
Author(s):  
Fedor V. Konstantinov ◽  
Anna A. Namyatova ◽  
Gerasimos Cassis

The higher classification of the mirid subfamily Bryocorinae has received comparatively little attention. It is not highly species-rich in comparison with other mirid subfamilies but does exhibit extraordinary morphological heterogeneity. In this work we provide a synthesis of the subfamily on a global basis, providing a new key and updated diagnoses of supraspecific taxa. Five tribes are recognised: Bryocorini, Dicyphini, Eccritotarsini, Felisacini and Monaloniini. The genus Campyloneura Fieber is transferred from the tribe Dicyphini to the Eccritotarsini. Analysis of distributional patterns and a survey of host plant associations are provided. Available data on distribution of the main bryocorine lineages are summarised in tabular form and evaluated using UPGMA methods, and geographically structured patterns were detected. The synthesis will enable users to identify bryocorines to tribal level with confidence and provides a classificatory framework for future revisionary and phylogenetic studies.



2015 ◽  
Vol 148 (4) ◽  
pp. 493-498 ◽  
Author(s):  
David R. Gillespie ◽  
Beth I. Gillespie

AbstractThe host plants of native Ceutorhynchus Germar (Coleoptera: Curculionidae) species are poorly known in North America, and knowledge of these is essential for biological control programmes involving this genus of weevils. We hypothesised that weevil larva emergence holes on plant specimens in herbarium collections might reveal potential plant-insect associations, and help locate populations of hosts for non-target testing. We examined 1114 plant specimens in 16 genera and 60 species of Brassicaceae and found 70 specimens among 30 species that showed evidence of feeding injury and exit holes typical of Ceutorhynchus. We used this information to locate populations of two species of Ceutorhynchus. Herbarium collections may be useful tools for developing knowledge of host plant associations for species of Ceutorhynchus.





2011 ◽  
Vol 11 (1) ◽  
pp. 47-56
Author(s):  
Hendrival Hendrival ◽  
Purnama Hidayat ◽  
Ali Nurmansyah

The study of host range and population dynamic of B. tabaci in red chili pepper fiel dswas conducted in Sub-district of Pakem, District of Sleman, Province of Daerah Istimewa Yogyakarta during dry season of May-October 2009. The study of host plants of B. tabaci from the red chili pepper fields revealed that there were 27 species of host plants belong to 22 genera of 13 families including crops and weeds. The host plants belong to families of Araceae, Amaranthaceae, Asteraceae, Brassicaceae, Capparidaceae, Convolvulaceae, Euphorbiaceae, Lamiaceae, Oxalidaceae, Papilionaceae, Rubiaceae, Solanaceae and Sterculiaceae. The host plant families of Asteraceae and Euphorbiaceae had the most abundant population of B. tabaci. Geminivirus-like symptoms were found in the weeds of A. conyzoides and A. boehmerioides. Population of B. tabaci adults correlated with abundance of host plant species found in the red chili pepper fields. The population of B. tabaci in red chili pepper fields was affected by natural enemy population. Population dynamic of the parasitoid Eretmocerus sp. correlated with population dynamic of the parasitized nymph of B. tabaci. Parasitoid Eretmocerus sp. was potentially good in controlling population of B. tabaci nymph in red chili pepper fields.



Zootaxa ◽  
2011 ◽  
Vol 3121 (1) ◽  
pp. 1 ◽  
Author(s):  
ANN E. NOACK ◽  
GERASIMOS CASSIS ◽  
HARLEY A. ROSE

The genus Thaumastocoris is revised. Nine new species are described (T. busso, T. freomooreae, T. kalaako, T. majeri, T. nadeli, T. ohallorani, T. roy, T. safordi, and T. slateri) and the five previously described species are redescribed. A diagnostic key to species is provided, supported with illustrations of key character systems and maps depicting their distributional range. Host plants are tabulated, and biology and host plant associations are discussed.



2020 ◽  
Vol 96 (11) ◽  
Author(s):  
S S Botnen ◽  
E Thoen ◽  
P B Eidesen ◽  
A K Krabberød ◽  
H Kauserud

ABSTRACT The number of plant species regarded as non-mycorrhizal increases at higher latitudes, and several plant species in the High-Arctic Archipelago Svalbard have been reported as non-mycorrhizal. We used the rRNA ITS2 and 18S gene markers to survey which fungi, as well as other micro-eukaryotes, were associated with roots of 31 arctic plant species not usually regarded as mycorrhizal in Svalbard. We assessed to what degree the root-associated fungi showed any host preference and whether the phylogeny of the plant hosts may mirror the composition of root-associated fungi. Fungal communities were largely structured according to host plant identity and to a less extent by environmental factors. We observed a positive relationship between the phylogenetic distance of host plants and the distance of fungal community composition between samples, indicating that the evolutionary history of the host plants plays a major role for which fungi colonize the plant roots. In contrast to the ITS2 marker, the 18S rRNA gene marker showed that chytrid fungi were prevalently associated with plant roots, together with a wide spectrum of amoeba-like protists and nematodes. Our study confirms that arbuscular mycorrhizal (AM) fungi are present also in arctic environments in low abundance.



2021 ◽  
Vol 80 (04) ◽  
pp. 142-144
Author(s):  
Carla BALIOTTE ◽  
Daniel A. AQUINO ◽  
Juan P. BOUVET ◽  
Gimena DELLAPÉ

The Psyllidae family is the most diverse within Psylloidea, with more than 1,300 species worldwide. Some psyllid species are important pests mainly of fruit trees, forest and ornamental plants. Despite being an economically relevant group, there are few studies on its biology, geographic distribution, natural enemies or host plant associations for many Argentinean psyllid species. This work records one species from Argentina for the first time, extends the distribution of another two psyllid species and provides information on host plants.



Sign in / Sign up

Export Citation Format

Share Document