scholarly journals Distribution of vascular plants north of Lake Baikal: a new, open access dataset

2021 ◽  
Vol 9 ◽  
Author(s):  
Denis Sandanov ◽  
Elena Brianskaia ◽  
Eduard Batotsyrenov

The area north of Lake Baikal has been poorly studied. Moreover, most of the studies conducted in this region were focused on mountain ridges or river valleys. This region includes a part of Baikal-Amur Mainline (BAM), a broad-gauge railway in the centre of Siberia, Russia. The railway is an alternative route of the Trans-Siberian Railway; BAM starts in southern Siberia (Taishet station of Irktusk Oblast), passes through the northern part of Lake Baikal and finishes in the Russian Far East (Sovetskaya Gavan station of Khabarovsky Krai). BAM has four connections with the Trans-Siberian Railway and is the centre of economic development for many regions of Russia. Maya Ivanova and Alexandr Chepurnov summarised the existing floristic information for this region in detailed species distribution maps which they published in the book “Flora of the western part of developing regions of Baikal-Amur Mainline (BAM)” (1983). After publishing this book, very few floristic studies have been performed in the study region. All available botanical information is still accumulated in a number of printed papers or books with limited circulation, which are not widely known to the international scientific community. We have digitised the point distribution maps from the book of Ivanova and Chepurnov and georeferenced all occurrence and sampling localities. The resulting dataset includes 9972 occurrences for 770 vascular plant species and subspecies from the area north of Lake Baikal. Additionally, the dataset includes information on the distribution of 43 rare and endangered species with 366 occurrences. From our point of view, the dataset makes a contribution to the global biodiversity data mobilisation, providing plant species distribution data for such a remote mountainous area.

2019 ◽  
Vol 11 (8) ◽  
pp. 953 ◽  
Author(s):  
Tarin Paz-Kagan ◽  
Micha Silver ◽  
Natalya Panov ◽  
Arnon Karnieli

Invasive plant species (IPS) are the second biggest threat to biodiversity after habitat loss. Since the spatial extent of IPS is essential for managing the invaded ecosystem, the current study aims at identifying and mapping the aggressive IPS of Acacia salicina and Acacia saligna, to understand better the key factors influencing their distribution in the coastal plain of Israel. This goal was achieved by integrating airborne-derived hyperspectral imaging and multispectral earth observation for creating species distribution maps. Hyperspectral data, in conjunction with high spatial resolution species distribution maps, were used to train the multispectral images at the species level. We incorporated a series of statistical models to classify the IPS location and to recognize their distribution and density. We took advantage of the phenological flowering stages of Acacia trees, as obtained by the multispectral images, for the support vector machine classification procedure. The classification yielded an overall Kappa coefficient accuracy of 0.89. We studied the effect of various environmental and human factors on IPS density by using a random forest machine learning model, to understand the mechanisms underlying successful invasions, and to assess where IPS have a higher likelihood of occurring. This algorithm revealed that the high density of Acacia most closely related to elevation, temperature pattern, and distances from rivers, settlements, and roads. Our results demonstrate how the integration of remote-sensing data with different data sources can assist in determining IPS proliferation and provide detailed geographic information for conservation and management efforts to prevent their future spread.


2009 ◽  
Vol 15 (1) ◽  
pp. 41-46 ◽  
Author(s):  
Agnieszka Popiela ◽  
Bożena Prajs ◽  
Andrzej Łysko

New data on the distribution of dwarf ephemeral wetland vascular plant species and communities in western and north-western PolandNew phytosociological data are provided onEleocharito-Caricetum bohemicaeoccurring on the easternmost range border in Central Europe. The distribution maps of selected character species ofEleocharito-Caricetumin Central Europe are presented.


2017 ◽  
Author(s):  
Nina S. Probatova ◽  
◽  
Vyacheslav Yu. Barkalov ◽  
Nikolai Stepanov ◽  
◽  
...  

Check List ◽  
2013 ◽  
Vol 9 (4) ◽  
pp. 832 ◽  
Author(s):  
Simon Pfanzelt ◽  
Carolina García ◽  
Alicia Marticorena

New collections extend the Chilean geographic distributions of five native and one endemic vascular plant species: Coriaria ruscifolia L. (Coriariaceae), Fascicularia bicolor (Ruiz and Pav.) Mez subsp. canaliculata E.C. Nelson and Zizka (Bromeliaceae), Drapetes muscosus Lam. (Thymelaeaceae), Phyllachne uliginosa J.R. Forst. and G. Forst (Stylidiaceae), Saxifragella bicuspidata (Hook.f.) Engl., and Saxifragodes albowiana (Kurtz ex Albov) D.M. Moore (both Saxifragaceae). Species descriptions, distribution maps, and figures are presented. Distribution patterns are discussed in light of biogeographic implications.


2017 ◽  
Vol 28 (1-2) ◽  
pp. 28-35 ◽  
Author(s):  
B. A. Baranovski

Nowadays, bioecological characteristics of species are the basis for flora and vegetation studying on the different levels. Bioecological characteristics of species is required in process of flora studying on the different levels such as biotopes or phytocenoses, floras of particular areas (floras of ecologically homogeneous habitats), and floras of certain territories. Ramensky scale is the one of first detailed ecological scales on plant species ordination in relation to various environmental factors; it developed in 1938 (Ramensky, 1971). A little later (1941), Pogrebnyak’s scale of forest stands was proposed. Ellenberg’s system developed in 1950 (Ellenberg, 1979) and Tsyganov’s system (Tsyganov, 1975) are best known as the systems of ecological scales on vascular plant species; these systems represent of habitat detection by ecotopic ecomorphs of plant species (phytoindication). Basically, the system proposed by Alexander Lyutsianovich Belgard was the one of first system of plant species that identiified ectomorphs in relation to environmental factors. As early as 1950, Belgard developed the tabulated system of ecomorphs using the Latin ecomorphs abbreviation; he also used the terminology proposed in the late 19th century by Dekandol (1956) and Warming (1903), as well as terminology of other authors. The article analyzes the features of Belgard’s system of ecomorphs on vascular plants. It has certain significance and advantages over other systems of ecomorphs. The use of abbreviated Latin names of ecomorphs in tabular form enables the use shortened form of ones. In the working scheme of Belgard’s system of ecomorphs relation of species to environmental factors are represented in the abbreviated Latin alphabetic version (Belgard, 1950). Combined into table, the ecomorphic analysis of plant species within association (ecological certification of species), biotope or area site (water area) gives an explicit pattern on ecological structure of flora within surveyed community, biotope or landscape, and on environmental conditions. Development and application by Belgrard the cenomorphs as «species’ adaptation to phytocenosis as a whole» were completely new in the development of systems of ecomorphs and, in this connection, different coenomorphs were distinguished. Like any concept, the system of ecomorphs by Belgard has the possibility and necessity to be developed and added. Long-time researches and analysis of literature sources allow to propose a new coenomorph in the context of Belgard’s system of ecomorphs development: silvomargoant (species of forest margin, from the Latin words margo – edge, boundary (Dvoretsky, 1976), margo – margin, ad margins silvarum – along the deciduous forest margins). As an example of ecomorphic characterization of species according to the system of ecomorphs by Belgard (when the abbreviated Latin ecomorph names are used in tabular form and the proposed cenomorph is used), it was given the part of the table on vascular plants ecomorphs in the National Nature Park «Orelsky» (Baranovsky et al). The Belgard’s system of ecomorphs is particularly convenient and can be successfully applied to data processing in the ecological analysis of the flora on wide areas with significant species richness, and the proposed ecomorph will be another necessary element in the Belgard’s system of ecomorphs. 


2021 ◽  
Vol 193 (2) ◽  
Author(s):  
Jens Oldeland ◽  
Rasmus Revermann ◽  
Jona Luther-Mosebach ◽  
Tillmann Buttschardt ◽  
Jan R. K. Lehmann

AbstractPlant species that negatively affect their environment by encroachment require constant management and monitoring through field surveys. Drones have been suggested to support field surveyors allowing more accurate mapping with just-in-time aerial imagery. Furthermore, object-based image analysis tools could increase the accuracy of species maps. However, only few studies compare species distribution maps resulting from traditional field surveys and object-based image analysis using drone imagery. We acquired drone imagery for a saltmarsh area (18 ha) on the Hallig Nordstrandischmoor (Germany) with patches of Elymus athericus, a tall grass which encroaches higher parts of saltmarshes. A field survey was conducted afterwards using the drone orthoimagery as a baseline. We used object-based image analysis (OBIA) to segment CIR imagery into polygons which were classified into eight land cover classes. Finally, we compared polygons of the field-based and OBIA-based maps visually and for location, area, and overlap before and after post-processing. OBIA-based classification yielded good results (kappa = 0.937) and agreed in general with the field-based maps (field = 6.29 ha, drone = 6.22 ha with E. athericus dominance). Post-processing revealed 0.31 ha of misclassified polygons, which were often related to water runnels or shadows, leaving 5.91 ha of E. athericus cover. Overlap of both polygon maps was only 70% resulting from many small patches identified where E. athericus was absent. In sum, drones can greatly support field surveys in monitoring of plant species by allowing for accurate species maps and just-in-time captured very-high-resolution imagery.


Fire Ecology ◽  
2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Jan W. van Wagtendonk ◽  
Peggy E. Moore ◽  
Julie L. Yee ◽  
James A. Lutz

Abstract Background The effects of climate on plant species ranges are well appreciated, but the effects of other processes, such as fire, on plant species distribution are less well understood. We used a dataset of 561 plots 0.1 ha in size located throughout Yosemite National Park, in the Sierra Nevada of California, USA, to determine the joint effects of fire and climate on woody plant species. We analyzed the effect of climate (annual actual evapotranspiration [AET], climatic water deficit [Deficit]) and fire characteristics (occurrence [BURN] for all plots, fire return interval departure [FRID] for unburned plots, and severity of the most severe fire [dNBR]) on the distribution of woody plant species. Results Of 43 species that were present on at least two plots, 38 species occurred on five or more plots. Of those 38 species, models for the distribution of 13 species (34%) were significantly improved by including the variable for fire occurrence (BURN). Models for the distribution of 10 species (26%) were significantly improved by including FRID, and two species (5%) were improved by including dNBR. Species for which distribution models were improved by inclusion of fire variables included some of the most areally extensive woody plants. Species and ecological zones were aligned along an AET-Deficit gradient from cool and moist to hot and dry conditions. Conclusions In fire-frequent ecosystems, such as those in most of western North America, species distribution models were improved by including variables related to fire. Models for changing species distributions would also be improved by considering potential changes to the fire regime.


Sign in / Sign up

Export Citation Format

Share Document