High resolution remote and proximal sensing to assess low and high yield areas in a wheat field

2015 ◽  
pp. 191-198 ◽  
Author(s):  
F.A. Rodrigues ◽  
I. Ortiz-Monasterio ◽  
P.J. Zarco-Tejada ◽  
U. Schulthess ◽  
B. Gérard
2015 ◽  
Vol 61 (1) ◽  
pp. 145-153 ◽  
Author(s):  
Jared S Farrar ◽  
Carl T Wittwer

Abstract BACKGROUND PCR is a key technology in molecular biology and diagnostics that typically amplifies and quantifies specific DNA fragments in about an hour. However, the kinetic limits of PCR are unknown. METHODS We developed prototype instruments to temperature cycle 1- to 5-μL samples in 0.4–2.0 s at annealing/extension temperatures of 62 °C–76 °C and denaturation temperatures of 85 °C–92 °C. Primer and polymerase concentrations were increased 10- to 20-fold above typical concentrations to match the kinetics of primer annealing and polymerase extension to the faster temperature cycling. We assessed analytical specificity and yield on agarose gels and by high-resolution melting analysis. Amplification efficiency and analytical sensitivity were demonstrated by real-time optical monitoring. RESULTS Using single-copy genes from human genomic DNA, we amplified 45- to 102-bp targets in 15–60 s. Agarose gels showed bright single bands at the expected size, and high-resolution melting curves revealed single products without using any “hot start” technique. Amplification efficiencies were 91.7%–95.8% by use of 0.8- to 1.9-s cycles with single-molecule sensitivity. A 60-bp genomic target was amplified in 14.7 s by use of 35 cycles. CONCLUSIONS The time required for PCR is inversely related to the concentration of critical reactants. By increasing primer and polymerase concentrations 10- to 20-fold with temperature cycles of 0.4–2.0 s, efficient (>90%), specific, high-yield PCR from human DNA is possible in <15 s. Extreme PCR demonstrates the feasibility of while-you-wait testing for infectious disease, forensics, and any application where immediate results may be critical.


2007 ◽  
Vol 11 (10) ◽  
pp. 713-718 ◽  
Author(s):  
David S. Jacob ◽  
Somashekarappa Mallenahalli ◽  
Aharon Gedanken ◽  
Leonid A. Solovyov ◽  
Evangelia Xenogiannopoulou ◽  
...  

Nickel phthalocyanine is synthesized in an ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate) giving a high yield of one-dimensional structures. The morphology of the synthesized material is detected by a high-resolution scanning electron microscope, a high-resolution transmission electron microscope, characterized by powder X-ray diffraction, and a CHN analyzer. The nonlinear optical properties of the synthesized phthalocyanine are also investigated.


2008 ◽  
Vol 15 (2) ◽  
pp. 131-143 ◽  
Author(s):  
A. Tomasselli ◽  
D. Paddock ◽  
T. Emmons ◽  
A. Mildner ◽  
J. Leone ◽  
...  

2018 ◽  
Vol 10 (8) ◽  
pp. 2826 ◽  
Author(s):  
Hamideh Nouri ◽  
Sattar Chavoshi Borujeni ◽  
Sina Alaghmand ◽  
Sharolyn Anderson ◽  
Paul Sutton ◽  
...  

More well-maintained green spaces leading toward sustainable, smart green cities mean that alternative water resources (e.g., wastewater) are needed to fulfill the water demand of urban greenery. These alternative resources may introduce some environmental hazards, such as salt leaching through wastewater irrigation. Despite the necessity of salinity monitoring and management in urban green spaces, most attention has been on agricultural fields. This study was defined to investigate the capability and feasibility of monitoring and predicting soil salinity using proximal sensing and remote sensing approaches. The innovation of the study lies in the fact that it is one of the first research studies to investigate soil salinity in heterogeneous urban vegetation with two approaches: proximal sensing salinity mapping using Electromagnetic-induction Meter (EM38) surveys and remote sensing using the high-resolution multispectral image of WorldView3. The possible spectral band combinations that form spectral indices were calculated using remote sensing techniques. The results from the EM38 survey were validated by testing soil samples in the laboratory. These findings were compared to remote sensing-based soil salinity indicators to examine their competence on mapping and predicting spatial variation of soil salinity in urban greenery. Several regression models were fitted; the mixed effect modeling was selected as the most appropriate to analyze data, as it takes into account the systematic observation-specific unobserved heterogeneity. Our results showed that Soil Adjusted Vegetation Index (SAVI) was the only salinity index that could be considered for predicting soil salinity in urban greenery using high-resolution images, yet further investigation is recommended.


1969 ◽  
Vol 47 (5) ◽  
pp. 869-871 ◽  
Author(s):  
G. M. Barton

A new C-methyl flavanone, 7-O-β-D-glucosyl-3′,4′,5-trihydroxy-6-methyl flavanone, has been obtained from healthy Douglas-fir [Pseudotsugamenziesii (Mirb.) Franco] root bark in a high yield of 2.6%. Its structure was elucidated by high resolution and mass spectrometry together with a variety of chemical and physical tests and confirmed by synthesis of its methylated aglycone. Pathological testing of this new glucoside against Poriaweirii Murr. is being undertaken.


Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1114
Author(s):  
Giuseppe Casula ◽  
Silvana Fais ◽  
Francesco Cuccuru ◽  
Maria Giovanna Bianchi ◽  
Paola Ligas ◽  
...  

This study presents the integrated application of a few non-destructive techniques, i.e., Close Range Photogrammetry (CRP), and low frequency (24 kHz) ultrasonic tomography complemented by petrographical analysis. The aim here is to assess the conservation state of a Carrara marble column in the Basilica of San Saturnino, which is part of a V-VI century Palaeo Christian complex in the city of Cagliari (Italy). The high resolution 3D modelling of the studied artifact was computed starting from the integration of proximal sensing techniques, such as CRP based on the Structure from Motion (SfM) technique, which provided information on the geometrical anomalies and reflectivity of the investigated marble column surface. The inner parts of the studied body were inspected successfully in a non-invasive way by computing the velocity pattern of the ultrasonic signal through the investigated materials, using 3D ultrasonic tomography. The latter was optimally designed based on the 3D CRP analysis and the locations of the source and receiver points were detected as accurately as possible. The integrated application of in situ CRP and ultrasonic techniques provided a full 3D high resolution model of the investigated artifact, which made it possible to evaluate the material characteristics and its degradation state, affecting mainly the shallower parts of the column. The 3D visualisation improves the efficiency, accuracy, and completeness of the interpretative process of data of a different nature in quite easily understood displays, as well as the communication between different technicians.


2019 ◽  
Vol 60 (11) ◽  
pp. 98-101
Author(s):  
Ilya I. Ustinov ◽  
◽  
Irina V. Shakhkeldyan ◽  
Nikolay V. Khlytin ◽  
Yury M. Atroshchenko ◽  
...  

The synthesis of new derivatives of 3-azabicyclononan is one of the urgent tasks of modern synthetic organic chemistry. 3-Azabicyclononan is a structural analogue of the cytisine alkaloid, which is a strong agonist of acetylcholine receptors. Among synthetic heterocycles containing a 3-azabicyclo[3.3.1]nonane fragment, compounds with different types of biological activity have been discovered at present: analgesic, anti-inflammatory, antimicrobial, antioxidant, and others. The introduction of a fragment of azabicyclononan into the amino acid structure can lead to a limitation of the conformational mobility of a new molecule, as a result of which the activity and selectivity of its interaction with the receptor will increase. We synthesized 2-(1,9-dinitro-8-oxo-6,11-diazatricyclo[7.3.1.02,7]trideca-2,4,6-trien-11-yl)acetic acid and 2-(1,9-dinitro-8-oxo-13-(2-oxopropyl)-6,11-diazatricyclo[7.3.1.02,7]trideca-2,4,6-trien-11-yl)acetic acid by the interaction of annionic σ-complexes 5,7-dinitro-8-hydroxyquinoline with glycine under Mannich condensation in high yield. At the beginning, when 5,7-dinitro-8-hydroxyquinoline NaBH4 was applied in DMF or acetone carbanion in DMSO, the corresponding anionic complexes were synthesized. The resulting adducts were isolated from the reaction mixture, dissolved in cold water, and an aminomethylating mixture consisting of formaldehyde and an amino acid was added. As a result, 3-azabicyclo[3.3.1]nonane derivatives are formed, annelated with a pyridine ring and containing an amino acid residue. By the methods of NMR and IR spectroscopy, as well as high-resolution mass spectrometry, the structure of the obtained compounds was proved. Thus, in the 1H NMR spectra of the synthesized compounds, a signal of the proton of the carboxyl group in the form of a broadened singlet is detected in a weak spectral region. Equatorial and axial protons of an alicyclic fragment form a characteristic system of signals in the range δ 3.20-3.60 ppm. In the IR spectra of these molecules, the vibrational bands of carbonyl groups at ν 1720 cm–1, as well as the vibrational bands of the C–O bond of the carboxyl group at ν 1198 cm–1, are fixed. The m/z values in the high resolution mass spectra correspond to the molecular weights of the synthesized diazatricycclotridecans.


Sign in / Sign up

Export Citation Format

Share Document