Potentially probiotic Lactobacillus strains with anti-proliferative activity induce cytokine/chemokine production and neutrophil recruitment in mice

2017 ◽  
Vol 8 (4) ◽  
pp. 615-623 ◽  
Author(s):  
G. Saxami ◽  
A. Karapetsas ◽  
P. Chondrou ◽  
S. Vasiliadis ◽  
E. Lamprianidou ◽  
...  

Lactobacillus pentosus B281 and Lactobacillus plantarum B282 are two Lactobacillus strains previously isolated from fermented table olives. Both strains were found to possess probiotic properties and displayed desirable technological characteristics for application as starters in novel functional food production. In the present study the anti-proliferative and immunostimulatory activities of the two strains were investigated. Firstly, we demonstrated that live L. pentosus B281 and L. plantarum B282 significantly inhibited the growth of human colon cancer cells (Caco-2) in a time- and dose-dependent manner. By employing the air pouch system in mice, we showed that administration of both strains led to a rapid and statistically significant infiltration of leukocytes in the air pouch exudates. The phenotypical characterisation of the recruited immune cells was performed by flow cytometry analysis. We demonstrated that the majority of the infiltrated leukocytes were neutrophils. Finally by using the Mouse Cytokine Array Panel A Detection Antibody cocktail, we showed that both strains induced the expression of granulocyte-colony stimulating factor, interleukin (IL)-1α, IL-1β, IL-6, chemokine (C-X-C motif) ligand (CXCL)-1, chemokine (C-C motif) ligand (CCL)-3, CCL-4, and CXCL-2 and diminished the expression levels of soluble intercellular adhesion molecule, macrophage colony-stimulating factor and metallopeptidase inhibitor 1. Our results showed that both strains display anti-proliferative and immunostimulatory properties equal or even better in some cases than those of established and commonly used probiotic strains. These findings further support the probiotic character of the two strains.

Medicines ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 123 ◽  
Author(s):  
Jun-Xian Zhou ◽  
Michael Wink

Background: We studied the effect of three plant extracts (Glycyrrhiza glabra, Paeonia lactiflora, Eriobotrya japonica) and six of their major secondary metabolites (glycyrrhizic acid, 18β glycyrrhetinic acid, liquiritigenin, isoliquiritigenin, paeoniflorin, ursolic acid) on the multidrug resistant human colon cancer cell line Caco-2 and human leukemia cell line CEM/ADR 5000 as compared to the corresponding sensitive cell line CCRF-CEM, and human colon cancer cells HCT-116, which do not over-express ATP-binding cassette (ABC) transporters. Methods: The cytotoxicity of single substances in sensitive and resistant cells was investigated by MTT assay. We also applied combinations of extracts or single compounds with the chemotherapeutic agent doxorubicin or doxorubicin plus the saponin digitonin. The intracellular retention of the ABC transporter substrates rhodamine 123 and calcein was examined by flow cytometry to explore the effect of the substances on the activity of ABC transporters P-glycoprotein and MRP1. Real-time PCR was applied to analyse the gene expression changes of ABCB1, ABCC1, caspase 3, caspase 8, AhR, CYP1A1, and GSTP1 in resistant cells under the treatment of the substances. Results: All the substances moderately inhibited cell growth in sensitive and resistant cells to some degree. Whereas ursolic acid showed IC50 of 14 and 22 µM in CEM/ADR 5000 and Caco-2 cells, respectively, glycyrrhizic acid and paeoniflorin were inactive with IC50 values above 400 μM. Except for liquiritigenin and isoliquiritigenin, all the other substances reversed MDR in CEM/ADR 5000 and Caco-2 cells to doxorubicin. Ue, ga, 18ga, and urs were powerful reversal agents. In CEM/ADR 5000 cells, high concentrations of all the substances, except Paeonia lactiflora extract, increased calcein or rhodamine 123 retention in a dose-dependent manner. In Caco-2 cells, all the substances, except liquiritigenin, retained rhodamine 123 in a dose-dependent manner. We also examined the effect of the plant secondary metabolite (PSM) panel on the expression of ABCB1, ABCC1, caspase 3, caspase 8, AhR, CYP1A1, and GSTP1 genes in MDR cells. Conclusions: The extracts and individual PSM could reverse MDR in CEM/ADR 5000 and Caco-2 cells, which overexpress ABC transporters, in two- and three-drug combinations. Most of the PSM also inhibited the activity of ABC transporters to some degree, albeit at high concentrations. Ue, ga, 18ga, and urs were identified as potential multidrug resistance (MDR) modulator candidates, which need to be characterized and validated in further studies.


Blood ◽  
1987 ◽  
Vol 70 (2) ◽  
pp. 404-411 ◽  
Author(s):  
A Yuo ◽  
S Kitagawa ◽  
T Okabe ◽  
A Urabe ◽  
Y Komatsu ◽  
...  

We examined the in vitro effect of recombinant human granulocyte colony- stimulating factor (rhG-CSF) on neutrophil anomalies in 20 patients with myelodysplastic syndromes (MDS) and eight patients with chronic myelogenous leukemia (CML). Neutrophil alkaline phosphatase (NAP) activity was determined in nine MDS patients and eight CML patients by a scoring method. NAP scores were decreased in six of the nine patients with MDS and in all of the patients with CML. In all patients with these diseases, NAP scores increased by incubating the blood with rhG- CSF. An increase in NAP scores by rhG-CSF was observed even at a concentration of 1 U/mL in patients with MDS but was observed only at higher concentrations (1,000 to 10,000 U/mL) in patients with CML. Significant increases in NAP scores occurred at 12 hours' incubation in patients with MDS, whereas the increase was more gradual in patients with CML. This time course difference was thought to be due mainly to the difference in cell populations of circulating myeloid cells between MDS patients and CML patients. Induction of NAP activity by rhG-CSF in patients with both these diseases was suppressed by the addition of inhibitors of RNA or protein synthesis. Neutrophil superoxide anion (O2- ) production induced by N-formyl-methionyl-leucyl-phenylalanine (fMLP) was determined in the other 11 patients with MDS. This neutrophil function was decreased in seven of the 11 patients with MDS, normal in two patients, and increased in two patients. Preincubation with rhG-CSF caused a significant increase in fMLP-induced O2- production in nine of the 11 patients with MDS. rhG-CSF enhanced this neutrophil function in a time- and dose-dependent manner, and maximal stimulation was observed at 2,000 to 4,000 U/mL of rhG-CSF and at five to ten minutes' incubation. The present results show that rhG-CSF is able to repair at least in part the neutrophil anomalies in these patients, and our data, especially for patients with MDS, suggest the clinical usefulness of rhG-CSF for this preleukemic disorder.


2000 ◽  
Vol 20 (18) ◽  
pp. 6779-6798 ◽  
Author(s):  
Angel W.-M. Lee ◽  
David J. States

ABSTRACT Colony-stimulating factor 1 (CSF-1) supports the proliferation, survival, and differentiation of bone marrow-derived cells of the monocytic lineage. In the myeloid progenitor 32D cell line expressing CSF-1 receptor (CSF-1R), CSF-1 activation of the extracellular signal-regulated kinase (ERK) pathway is both Ras and phosphatidylinositol 3-kinase (PI3-kinase) dependent. PI3-kinase inhibition did not influence events leading to Ras activation. Using the activity of the PI3-kinase effector, Akt, as readout, studies with dominant-negative and oncogenic Ras failed to place PI3-kinase downstream of Ras. Thus, PI3-kinase appears to act in parallel to Ras. PI3-kinase inhibitors enhanced CSF-1-stimulated A-Raf and c-Raf-1 activities, and dominant-negative A-Raf but not dominant-negative c-Raf-1 reduced CSF-1-provoked ERK activation, suggesting that A-Raf mediates a part of the stimulatory signal from Ras to MEK/ERK, acting in parallel to PI3-kinase. Unexpectedly, a CSF-1R lacking the PI3-kinase binding site (ΔKI) remained capable of activating MEK/ERK in a PI3-kinase-dependent manner. To determine if Src family kinases (SFKs) are involved, we demonstrated that CSF-1 activated Fyn and Lyn in cells expressing wild-type (WT) or ΔKI receptors. Moreover, CSF-1-induced Akt activity in cells expressing ΔKI is SFK dependent since Akt activation was prevented by pharmacological or genetic inhibition of SFK activity. The docking protein Gab2 may link SFK to PI3-kinase. CSF-1 induced Gab2 tyrosyl phosphorylation and association with PI3-kinase in cells expressing WT or ΔKI receptors. However, only in ΔKI cells are these events prevented by PP1. Thus in myeloid progenitors, CSF-1 can activate the PI3-kinase/Akt pathway by at least two mechanisms, one involving direct receptor binding and one involving SFKs.


2001 ◽  
Vol 152 (2) ◽  
pp. 361-374 ◽  
Author(s):  
Ichiro Nakamura ◽  
Lorraine Lipfert ◽  
Gideon A. Rodan ◽  
Le T. Duong

The macrophage colony stimulating factor (M-CSF) and αvβ3 integrins play critical roles in osteoclast function. This study examines M-CSF– and adhesion-induced signaling in prefusion osteoclasts (pOCs) derived from Src-deficient and wild-type mice. Src-deficient cells attach to but do not spread on vitronectin (Vn)-coated surfaces and, contrary to wild-type cells, their adhesion does not lead to tyrosine phosphorylation of molecules activated by adhesion, including PYK2, p130Cas, paxillin, and PLC-γ. However, in response to M-CSF, Src−/− pOCs spread and migrate on Vn in an αvβ3-dependent manner. Involvement of PLC-γ activation is suggested by using a PLC inhibitor, U73122, which blocks both adhesion- and M-CSF–mediated cell spreading. Furthermore, in Src−/− pOCs M-CSF, together with filamentous actin, causes recruitment of β3 integrin and PLC-γ to adhesion contacts and induces stable association of β3 integrin with PLC-γ, phosphatidylinositol 3-kinase, and PYK2. Moreover, direct interaction of PYK2 and PLC-γ can be induced by either adhesion or M-CSF, suggesting that this interaction may enable the formation of integrin-associated complexes. Furthermore, this study suggests that in pOCs PLC-γ is a common downstream mediator for adhesion and growth factor signals. M-CSF–initiated signaling modulates the αvβ3 integrin-mediated cytoskeletal reorganization in prefusion osteoclasts in the absence of c-Src, possibly via PLC-γ.


Blood ◽  
1989 ◽  
Vol 74 (1) ◽  
pp. 42-48 ◽  
Author(s):  
N Komatsu ◽  
T Suda ◽  
M Moroi ◽  
N Tokuyama ◽  
Y Sakata ◽  
...  

Abstract Recently, a human megakaryoblastic cell line, CMK, was established from the peripheral blood of a megakaryoblastic leukemia patient with Down syndrome. Using this cell line, we studied the proliferation and differentiation of megakaryocytic cells in the presence of highly purified human hematopoietic factors and phorbol 12-myristate-13- acetate (PMA). In a methylcellulose culture system, interleukin-3 (IL- 3) and granulocyte-macrophage colony-stimulating factor (GM-CSF) facilitated colony formation by CMK cells in a dose-dependent manner. The maximum stimulating doses of these factors were 10 and 200 U/mL, respectively. These concentrations were comparable to those that stimulate activity in normal hematopoietic cells. In contrast, granulocyte-colony stimulating factor (G-CSF), macrophage-colony stimulating factor (M-CSF), and erythropoietin (EPO) had no effects on the colony formation of CMK cells. In a liquid culture system, 20% of the CMK cells expressed glycoprotein IIb/IIIa (GPIIb/IIIa) antigen without hematopoietic factors, whereas 40% of the cells expressed GPIIb/IIIa with the addition of IL-3 and GM-CSF. EPO also slightly enhanced expression of GPIIb/IIIa. On the other hand, PMA inhibited growth of CMK cells and induced most of them to express the GPIIb/IIIa antigen. Furthermore, PMA induced CMK cells to produce growth activity toward new inocula of CMK cells. This growth factor (GF) contained colony-stimulating activity (CSA) in normal bone marrow (BM) cells. The activity was believed to be attributable mainly to GM-CSF, since 64% of this activity was neutralized by anti-GM-CSF antibodies and a transcript of GM-CSF was detected in mRNA from PMA-treated CMK cells by Northern blot analysis. These observations suggest that GM-CSF, as well as IL-3, should play an important role in megakaryocytopoiesis.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Fengchang Huang ◽  
Yaxin Long ◽  
Qingqing Liang ◽  
Boregowda Purushotham ◽  
Mallappa Kumara Swamy ◽  
...  

With the advancement of nanobiotechnology, eco-friendly approaches of plant-mediated silver nanomaterial (AgNP) biosynthesis have become more attractive for biomedical applications. The present study is a report of biosynthesizing AgNPs using Chlorophytum borivilianum L. (Safed musli) callus extract as a novel source of reducing agent. AgNO3 solution challenged with the methanolic callus extract displayed a change in color from yellow to brown owing to the bioreduction reaction. Further, AgNPs were characterized by using UV–visible spectrophotometry, X-ray Diffraction (XRD), Atomic Force Microscopy (AFM), and Fourier Transform Infrared Spectroscopy (FTIR). UV–vis spectrum revealed the surface plasmon resonance property of AgNPs at around 450 nm. XRD pattern with typical peaks indicated the face-centered cubic nature of silver. AFM analysis confirmed the existence of spherical-shaped and well-dispersed AgNPs having an average size of 52.0 nm. Further, FTIR analysis confirmed the involvement of different phytoconstituents of the callus extract role in the process of bioreduction to form nanoparticles. The AgNPs were more efficient in inhibiting the tested pathogenic microbes, namely, Pseudomonas aeruginosa, Bacillus subtilis, Methicillin-resistant Escherichia coli, Staphylococcus aureus, and Candida albicans compared to callus extract. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay confirmed the cytotoxic property of AgNPs against human colon adenocarcinoma cell line (HT-29) in a dose-dependent manner. At higher concentrations of 500 μg/mL AgNPs, the cell viability was observed to be only 7% after 24 hours with IC50 value of 254 μg/mL. Therefore, these AgNPs clearly endorse the manifold potential to be used in various biomedical applications in the near future.


Blood ◽  
1992 ◽  
Vol 79 (12) ◽  
pp. 3227-3232 ◽  
Author(s):  
K Taguchi ◽  
A Shibuya ◽  
Y Inazawa ◽  
T Abe

Abstract We investigated the effects of recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) and recombinant human granulocyte- CSF (rhG-CSF) on the generation of natural killer (NK) cells in vitro. NK cells were cultured from selected human bone marrow cells obtained after the elimination of mature T and NK cells. rhGM-CSF significantly suppressed the generation of CD56+ cells and NK activity (P less than .01) in a dose-dependent manner. The generation of large granular lymphocytes (LGL) was also suppressed in the presence of rhGM-CSF (P less than .01). In contrast, rhG-CSF had no effect on LGL (P greater than .05). Both rhGM-CSF and rhG-CSF had no influence on the CD56+ cell count in the peripheral blood. These results suggest that rhGM-CSF suppresses the in vitro generation of NK cells.


Sign in / Sign up

Export Citation Format

Share Document