Breast biomechanics, exercise induced breast pain (mastalgia), breast support condition and its impact on riding position in female equestrians

2021 ◽  
pp. 1-12
Author(s):  
L.J. Cameron ◽  
J. Burbage ◽  
V. Lewis ◽  
L. Dumbell ◽  
E. Billingsley ◽  
...  

Breast biomechanics, exercise-induced breast pain (EIBP) and performance effects in female athletes are established. Wearing sports bras during exercise reduces breast movement and EIBP. Despite the prevalence of female equestrians, little investigation of breast movement during horse riding exists, yet excessive breast movement, embarrassment and EIBP are reported. Breast movement relative to the torso is linked to EIBP, associated with magnitude and direction of forces generated. Equestrians may experience novel breast and upper-body movement patterns in response to large vertical excursions of the horse. This study aimed to establish relative vertical breast displacement (RVBD), EIBP and positional changes in three support conditions: ‘no support’, ‘low support’ and ‘high support’. Thirty-eight female equestrians rode a Racewood™ Equine Simulator in each breast support condition in medium walk, medium trot (sitting) and medium canter. Trials were filmed and analysed using Quintic® Biomechanics V29. Significant reductions in RVBD (P<0.001) and EIBP (P<0.001) were identified with increased breast support in all gaits. In medium trot (sitting) a significant reduction in range of movement (ROM) of shoulder-elbow-wrist (P<0.001) was seen from low to high support. ROM of torso-vertical angles were reduced from no support to low support (P<0.001) and further by high support (P<0.001). This reduction in ROM was significantly greater in large breasted riders (cup size DD-FF) (n=21) (P<0.001) compared to small breasted (cup size AA-D) (n=17). These results suggest that appropriate breast support positively impacts EIBP and riding position in female riders possibly enhancing performance. As RVBD and reported EIBP were not wholly comparative with results in female runners, further research is warranted to establish breast movement in equestrianism in three dimensions.

2020 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Brooke R. Brisbine ◽  
Julie R. Steele ◽  
Elissa J. Phillips ◽  
Deirdre E. McGhee

2021 ◽  
pp. 174702182110371
Author(s):  
Scott Beveridge ◽  
Estefanía Cano ◽  
Steffen A. Herff

Equalisation, a signal processing technique commonly used to shape the sound of music, is defined as the adjustment of the energy in specific frequency components of a signal. In this work we investigate the effects of equalisation on preference and sensorimotor synchronisation in music. Twenty-one participants engaged in a goal-directed upper body movement in synchrony with stimuli equalised in three low-frequency sub-bands (0 - 50 Hz, 50 - 100 Hz, 100 - 200 Hz). To quantify the effect of equalisation, music features including spectral flux, pulse clarity, and beat confidence were extracted from seven differently equalised versions of music tracks - one original and six manipulated versions for each music track. These music tracks were then used in a movement synchronisation task. Bayesian mixed effects models revealed different synchronisation behaviours in response to the three sub-bands considered. Boosting energy in the 100 - 200 Hz sub-band reduced synchronisation performance irrespective of the sub-band energy of the original version. An energy boost in the 0 - 50 Hz band resulted in increased synchronisation performance only when the sub-band energy of the original version was high. An energy boost in the 50 - 100 Hz band increased synchronisation performance only when the sub-band energy of the original version was low. Boosting the energy in any of the three subbands increased preference regardless of the energy of the original version. Our results provide empirical support for the importance of low-frequency information for sensorimotor synchronisation and suggest that the effect of equalisation on preference and synchronisation are largely independent of one another.


2008 ◽  
Vol 26 (2) ◽  
pp. 103-119 ◽  
Author(s):  
Ginevra Castellano ◽  
Marcello Mortillaro ◽  
Antonio Camurri ◽  
Gualtiero Volpe ◽  
Klaus Scherer

EMOTIONAL EXPRESSION IN MUSIC PERFORMANCE includes important cues arising from the body movement of the musician. This movement is related to both the musical score execution and the emotional intention conveyed. In this experiment, a pianist was asked to play the same excerpt with different emotionally expressive intentions. The aim was to verify whether different expressions could be distinguished based on movement by trying to determine which motion cues were most emotion-sensitive. Analyses were performed via an automated system capable of detecting the temporal profiles of two motion cues: the quantity of motion of the upper body and the velocity of head movements. Results showed that both were sensitive to emotional expression, especially the velocity of head movements. Further, some features conveying information about movement temporal dynamics varied among expressive conditions allowing emotion discrimination. These results are in line with recent theories that underlie the dynamic nature of emotional expression.


2018 ◽  
Vol 43 (2) ◽  
pp. 204-212 ◽  
Author(s):  
Francesco Paradisi ◽  
Eugenio Di Stanislao ◽  
Aurora Summa ◽  
Stefano Brunelli ◽  
M Traballesi ◽  
...  

Background: The observation of upper body movement is gaining interest in the gait analysis community. Recent studies involved the use of body-worn motion sensors, allowing translation of laboratory measurements to real-life settings in the context of patient monitoring and fall prevention. Objectives: It was shown that amputee persons demonstrate altered acceleration patterns due to the presence of prosthetic components, while no information is available on how accelerations propagate upwards to the head during level walking. This descriptive study aims to fill this gap. Study design: Original research report. Methods: Twenty definitive prosthesis users with transtibial amputation and 20 age-matched able-bodied individuals participated in the study. Three magneto-inertial measurement units were placed at head, sternum and pelvis level to assess acceleration root mean square. Three repetitions of the 10-m walking test were performed at a self-selected speed. Results: Acceleration root mean square was significantly larger at pelvis and head level in individuals with amputation than in able-bodied participants, mainly in the transverse plane ( p < 0.05). Differences were also observed in how accelerations propagate upwards, highlighting that a different motor strategy is adopted in amputee persons gait to compensate for increased instability. Conclusion: The obtained parameters allow an objective mobility assessment of amputee persons that can integrate with the traditional clinical approach. Clinical relevance Transtibial amputees exhibit asymmetries due to the sound limb’s support prevalence during gait: this is evidenced by amplified accelerations on the transverse plane and by related differences in upper body movement control. Assessing these accelerations and their attenuations upwards may be helpful to understand amputee’s motor strategies and to improve prosthetic training.


2012 ◽  
Vol 27 (1) ◽  
pp. 15-20 ◽  
Author(s):  
Sarah Schmalenberger ◽  
Charles E Gessert ◽  
Jean E Giebenhain ◽  
Lisa D Starr

The Life and Livelihood Study was designed to describe and understand the experience of women musicians treated for breast cancer. This report focuses on Phase I of the study, a web-based survey that examined subjects’ physical symptoms and side effects following breast cancer treatment. Subjects were recruited nationally, using advertisements in musicians’ publications and presentations at national meetings. Subjects were asked about specific side effects or symptoms they had experienced, their severity and duration, and the effects of symptoms on their capacity to make music. Subjects were also asked what aspect of their breast cancer treatment they associated with each symptom and were invited to provide comments. A total of 321 individuals logged on: 100 met all inclusion criteria. Of these, 90 completed the entire survey. Commonly reported symptoms included fatigue (70%), problems with cognition (53%), limitations in upper body movement (51%), and pain (45%). Many reported that their symptoms were of moderate or greater intensity, and that they persisted for >12 months or were ongoing. The survey documented that many subjects experienced diminished capacity to function as musicians, especially due to pain, limitations in upper body and extremity movement, numbness in the chest and/or arms, contracture/fibrosis, and shortness of breath. These findings are consistent with emerging studies that describe long-term effects of breast cancer treatments. In planning for breast cancer treatment, rehabilitation and survivorship, consideration should be given to how treatment is likely to affect fitness for ongoing professional work.


Author(s):  
Daniel Enrique Rodriguez Bauza ◽  
Patricia Silveyra

Exercise-induced bronchoconstriction (EIB) is a common complication of athletes and individuals who exercise regularly. It is estimated that about 90% of patients with underlying asthma (a sexually dimorphic disease) experience EIB; however, sex differences in EIB have not been studied extensively. With the goal of better understanding the prevalence of EIB in males and females, and because atopy has been reported to occur at higher rates in athletes, in this study, we investigated sex differences in EIB and atopy in athletes. A systematic literature review identified 60 studies evaluating EIB and/or atopy in post-pubertal adult athletes (n = 7501). Collectively, these studies reported: (1) a 23% prevalence of EIB in athletes; (2) a higher prevalence of atopy in male vs. female athletes; (3) a higher prevalence of atopy in athletes with EIB; (4) a significantly higher rate of atopic EIB in male vs. female athletes. Our analysis indicates that the physiological changes that occur during exercise may differentially affect male and female athletes, and suggest an interaction between male sex, exercise, and atopic status in the course of EIB. Understanding these sex differences is important to provide personalized management plans to athletes with underlying asthma and/or atopy.


2020 ◽  
Vol 38 (5) ◽  
pp. 528-533 ◽  
Author(s):  
Brooke R. Brisbine ◽  
Julie R. Steele ◽  
Elissa J. Phillips ◽  
Deirdre E. McGhee
Keyword(s):  

2014 ◽  
Vol 42 (1) ◽  
pp. 51-61 ◽  
Author(s):  
Matteo Zago ◽  
Andrea Francesco Motta ◽  
Andrea Mapelli ◽  
Isabella Annoni ◽  
Christel Galvani ◽  
...  

Abstract Soccer kicking kinematics has received wide interest in literature. However, while the instep-kick has been broadly studied, only few researchers investigated the inside-of-the-foot kick, which is one of the most frequently performed techniques during games. In particular, little knowledge is available about differences in kinematics when kicking with the preferred and non-preferred leg. A motion analysis system recorded the three-dimensional coordinates of reflective markers placed upon the body of nine amateur soccer players (23.0 ± 2.1 years, BMI 22.2 ± 2.6 kg/m2), who performed 30 pass-kicks each, 15 with the preferred and 15 with the non-preferred leg. We investigated skill kinematics while maintaining a perspective on the complete picture of movement, looking for laterality related differences. The main focus was laid on: anatomical angles, contribution of upper limbs in kick biomechanics, kinematics of the body Center of Mass (CoM), which describes the whole body movement and is related to balance and stability. When kicking with the preferred leg, CoM displacement during the ground-support phase was 13% higher (p<0.001), normalized CoM height was 1.3% lower (p<0.001) and CoM velocity 10% higher (p<0.01); foot and shank velocities were about 5% higher (p<0.01); arms were more abducted (p<0.01); shoulders were rotated more towards the target (p<0.01, 6° mean orientation difference). We concluded that differences in motor control between preferred and non-preferred leg kicks exist, particularly in the movement velocity and upper body kinematics. Coaches can use these results to provide effective instructions to players in the learning process, moving their focus on kicking speed and upper body behavior


Sign in / Sign up

Export Citation Format

Share Document