Bioaccessibility of Encapsulated Mango Peel Phenolic Extract and its Application in Milk Beverage

2020 ◽  
Vol 16 (1) ◽  
pp. 29-40
Author(s):  
Tamer M. El-Mess ◽  
Marwa M. El-Said ◽  
Heba H. Salama ◽  
Dina Mostafa Mo ◽  
Gaspar Ros
Keyword(s):  
2019 ◽  
Vol 4 (2) ◽  

There is a worldwide demand for phenolic compounds (PC) because they exhibit several biological activities. This work aimed at extracting phenolic compounds from peanut meal. The methods of extraction were mainly: conventional solvent extraction (traditional methods) and ultrasound assisted extraction (recent methods) and comparing their results. Peanut meal (PM) was prepared by defatting with n-hexane, and then extracted by the two previous methods. First, the conventional solvents used were 80% methanol, ethanol, acetone, isopropanol, and distilled water. Then studied Different parameters such as meal: water ratio, also the effect of temperature and the pH on the extraction process. Second, ultrasonic assisted extractions (USAE), the parameters investigated were temperature, time and speed of sonication. Finally, all the extracts were analyzed by HPLC for their phenolic contents. Results indicated that the highest extracted PC achieved by solvents was in distilled water where 1:100, Meal: Water ratio which extracted 40 mg PC / g PM at 30& 35°C. Highest extracted PC was achieved by alkaline medium at pH 12 more than acidic and neutral medium. While (USAE) at speed 8 ultrasonication and temperature 30ᵒC, extracted 49.2mg PC /g PM. Sothe ultrasound assisted extraction exhibited great influence on the extraction of phenolic compounds from peanut meal. The ultrasonic peanut extract was examined for its antioxidant, antimicrobial and anticarcinogenic activities. The antioxidant activity of PM phenolic extract prepared by ultrasonic technique, was measured by, β-carotene, and DPPH methods, and reducing antioxidant power. Results revealed values: 84.57, 57.72 and 5960 respectively. The PM extract showed different levels of antimicrobial activity against the pathogenic bacteria used. As for the anticarcinogenic effect PM phenolic extract most effective on inhibiting colon carcinoma and lung carcinoma cell lines with IC50 = 20.7 and 20.8 µ/ml., respectively. This was followed by intestinal carcinoma and liver carcinoma cell lines with IC50= 39.6 and 40.2µ/ml.


2011 ◽  
Vol 37 (5) ◽  
pp. 567-572
Author(s):  
G. Gantioque Geraldine ◽  
Lu ZENG ◽  
Yan-bin XIA

2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Musri Musman ◽  
Mauli Zakia ◽  
Ratu Fazlia Inda Rahmayani ◽  
Erlidawati Erlidawati ◽  
Safrida Safrida

Abstract Background Ethnobotany knowledge in a community has shaped local wisdom in utilizing plants to treat diseases, such as the use of Malaka (Phyllanthus emblica) flesh to treat type 2 diabetes. This study presented evidence that the phenolic extract of the Malaka flesh could reduce blood sugar levels in the diabetic induced rats. Methods The phenolic extract of the P. emblica was administrated to the glucose-induced rats of the Wistar strain Rattus norvegicus for 14 days of treatment where the Metformin was used as a positive control. The data generated were analyzed by the two-way ANOVA Software related to the blood glucose level and by SAS Software related to the histopathological studies at a significant 95% confidence. Results The phenolic extract with concentrations of 100 and 200 mg/kg body weight could reduce blood glucose levels in diabetic rats. The post hoc Dunnet test showed that the administration of the extract to the rats with a concentration of 100 mg/kg body weight demonstrated a very significant decrease in blood glucose levels and repaired damaged cells better than administering the extract at a concentration of 200 mg/kg weight body. Conclusion The evidence indicated that the phenolic extract of the Malaka flesh can be utilized as anti type 2 Diabetes mellitus without damaging other organs.


Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 594
Author(s):  
Sydney E. Schnur ◽  
Raghavendra G. Amachawadi ◽  
Giovanna Baca ◽  
Sarah Sexton-Bowser ◽  
Davina H. Rhodes ◽  
...  

Antimicrobial resistance in bacterial pathogens associated with bovine mastitis and human foodborne illnesses from contaminated food and water have an impact on animal and human health. Phenolic compounds have antimicrobial properties and some specialty sorghum grains are high in phenolic compounds, and the grain extract may have the potential as a natural antimicrobial alternative. The study’s objective was to determine antimicrobial effects of sorghum phenolic extract on bacterial pathogens that cause bovine mastitis and human foodborne illnesses. Bacterial pathogens tested included Escherichia coli, Salmonella Typhimurium, Campylobacter jejuni, Campylobacter coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Klebsiella oxytoca, Staphylococcus aureus, and Enterococcus faecalis. Antibacterial activities of sorghum phenolic extracts were determined by agar-well diffusion assay. Sorghum phenolic extract was added to the wells in concentrations of 0, 100, 200, 500, 1000, or 4000 µg/mL. The control wells did not receive phenolic extract. Plates were incubated for 18–24 h, and the diameter of each zone of inhibition was measured. The results indicated that sorghum phenolic extract had inhibitory effects on Staphylococcus aureus, Enterococcus faecalis, Campylobacter jejuni, and Campylobacter coli.


2021 ◽  
Author(s):  
Gloria M. Castañeda‐Ruelas ◽  
R. Karely Ibarra‐Medina ◽  
Guillermo Niño‐Medina ◽  
Saraid Mora‐Rochín ◽  
Julio Montes‐Ávila ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 627
Author(s):  
Malaiporn Wongkaew ◽  
Bow Tinpovong ◽  
Korawan Sringarm ◽  
Noppol Leksawasdi ◽  
Kittisak Jantanasakulwong ◽  
...  

Pectin recovered from mango peel biomass can be used as a potential source for pectic oligosaccharide hydrolysate with excellent probiotic growth-enhancing performance and prebiotic potentials. Consequently, the objectives of the current study were to optimise the enzyme hydrolysis treatment of mango peel pectin (MPP) and to evaluate the pectic oligosaccharide effects of Lactobacillus reuteri DSM 17938 and Bifidobacterium animalis TISTR 2195. Mango of “chok anan” variety was chosen due to its excessive volume of biomass in processing and high pectin content. The optimal treatment for mango peel pectic oligosaccharide (MPOS) valorisation was 24 h of fermentation with 0.3% (v/v) pectinase. This condition provided small oligosaccharides with the molecular weight of 643 Da that demonstrated the highest score of prebiotic activity for both of B. animalis TISTR 2195 (7.76) and L. reuteri DSM 17938 (6.87). The major sugar compositions of the oligosaccharide were fructose (24.41% (w/w)) and glucose (19.52% (w/w)). For the simulation of prebiotic fermentation, B. animalis TISTR 2195 showed higher proliferation in 4% (w/v) of MPOS supplemented (8.92 log CFU/mL) than that of L. reuteri (8.53 CFU/mL) at 72 h of the fermentation time. The main short chain fatty acids (SCFAs) derived from MPOS were acetic acid and propionic acid. The highest value of total SCFA was achieved from the 4% (w/v) MPOS supplementation for both of B. animalis (68.57 mM) and L. reuteri (69.15 mM). The result of this study therefore conclusively advises that MPOS is a novel pectic oligosaccharide resource providing the opportunity for the sustainable development approach through utilising by-products from the fruit industry.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 584
Author(s):  
Hafza Fasiha Zahid ◽  
Chaminda Senaka Ranadheera ◽  
Zhongxiang Fang ◽  
Said Ajlouni

Among the waste by-products generated by the fruit industry (peels, seeds, and skins), fruit peel constitutes the major component. It is estimated that fruit peel accounts for at least 20% of the fresh fruit weight. Fruit peels are considered as major sources of dietary fiber and anticipated to be successfully utilized as prebiotics. This study examined the chemical composition, functional properties and the prebiotic effects of three major tropical fruit peels (apple, banana and mango). The prebiotic effect was tested using three commercial probiotic strains (Lactobacillus rhamnosus, L. casei and Bifidobacterium lactis) individually and in combination. Each probiotic culture was fortified with different concentration (0%, 2% and 4%) of selected fruit peel powder (FPP). Results revealed that all tested FPP significantly (p < 0.05) enhanced the probiotics viable counts, which reached >10 logs after 24 h of incubation. However, the concentration of 2% and 4% FPP showed no significant differences (p > 0.05) on the probiotic viable counts. Additionally, the prebiotic effects of FPP were the same when applied to individual and mixed cultures. This investigation demonstrated that small amount (2%) of apple, banana and mango peel powder could be successfully utilized as prebiotics to enhance the growth of lactic acid bacteria (LAB). Additionally, the studied physical and chemical characteristics of FPP demonstrated their potential applications in the food and pharmaceutical industries as functional ingredients.


Sign in / Sign up

Export Citation Format

Share Document